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Abstract

The Serial Cost Sharing Rule was originally conceived for situations where the demands of
agents pertain to a homogeneous private good, produced by an unreplicable technology. In
this context, it is endowed with a variety of desirable equity and coherency properties. This
paper investigates the extension of this rule to the context where agents request many goods
that may be public, private or specific to some of them, where the aggregation rule may be
very general and where demands may have to be scaled in a non proportional way, more
precisely along a path, in order to compute cost shares. It proposes the Path Serial Rule
to address these general problems. It then shows which properties and characteristics are
satisfied by this rule. Some of them are transposed directly from the single good context
to the general one while other must be weakened. More precisely, they are required to hold
only on the paths along which demands must be scaled if needed. Nevertheless, some of the
characterisations of the serial rule in the single good case do not carry over to the general
context.
Keywords: Serial cost sharing, multi products, general aggregation.

JEL Classification: D63, C71

Résumé

La règle de partage séquentiel des coûts a été conçue à l’origine pour le cas où les de-
mandes des agents portent sur un bien privé homogène, produit par une technologie non
reproductible. Dans un tel contexte, cette règle satisfait de nombreuses propriétés d’équité
et de cohérence. Dans cet article, on étudie l’extension de cette règle aux cas où les demandes
des agents peuvent être des vecteurs qui ne représentent pas forcément des biens homogènes
entre les agents, dont l’agrégation ne se fait pas uniquement via la sommation et où les de-
mandes doivent être ajustées de manière non proportionnelle, plus précisément le long d’un
sentier, pour le calcul des parts de coût. On montre ensuite quelles sont les propriétés qui
sont satisfaites par cette règle ou qui la caractérisent. Certaines sont transposées directe-
ment du contexte à un seul bien au contexte général alors que d’autres doivent être affaiblies.
Plus précisément, on exige leur respect uniquement le long des sentiers servant à ajuster les
demandes le cas échéant. Néanmoins, certaines caractérisations de la règle séquentielle dans
le contexte à un seul bien ne peuvent pas être transposées au contexte général.



1 Introduction

The Serial Cost Sharing Rule has received much attention since its introduction by Shenker

(1990) and its extensive analysis by Moulin and Shenker (1992, 1994). It was originally

conceived for problems where n agents request different quantities of a private good, the sum

of which is produced by a single facility. This rule can be constructed from two ethical axioms:

Equal Treatment of Equals (in terms of demands) and Independence of Larger Demands (a

protection of small demanders against larger ones). It satisfies other interesting properties

and has other characterizations as well. It is therefore natural to investigate whether this

rule can be extended to more general problems while keeping similar properties.

Sprumont (1998) brings a partial answer to this question by proposing an extension of

the Serial Rule for the case where each agent requests a single specific good. The Axial Serial

Rule, as he calls it, also has an interesting characterization. Koster et al. (1998) propose a

similar extension, the Radial Serial Rule, for the context where agents request several but

homogeneous private goods. As its name implies, this rule uses intermediate demands that

are constructed by changing the original demands in a proportional way.

None of the two problems considered by these authors is more general than the other. Our

paper considers a more general context where each agent requests a list of goods that may be

private, public, or specific to some agents and where aggregate demand is not necessarily the

sum of individual demands. Moreover, we admit more general paths along which demands

may be scaled down to construct intermediate demands. This yields a rule that we call the

Path Serial Rule.

The paper presents a systematic analysis of this rule in the light of different properties

found in the literature on cost sharing rules. These properties are transposed or extended

to the general context whenever possible. Otherwise, they are weakened by requiring that

the predicate holds only for changes in the demands taking place along the specified paths.

It is shown that some of these properties are incompatible in the general context.

The Path Serial Rule is characterized by the Equal Treatment of Equivalent Demands

(in terms of stand-alone costs) and the Path Serial Principle (a weaker form of Independence

of Larger Demands). It also satisfies properties similar in spirit to the ones that hold for

the original Serial Rule. However, a characterization in terms of other properties as found

by Moulin and Shenker (1994) for the original rule or Sprumont (1998) for the Axial Rule

seems impossible.

The paper is organized as follows. In Section 2, we review some of the known results on

serial cost sharing and its generalization and in particular those of Kolpin (1996), Sprumont

(1998) and Koster et al. (1998). We also give an overview of the paper. The formulation



of the problem and the main definitions are given in Section 3. The section ends with

an example illustrating the importance of the more general form of the problems to be

considered. The Path Serial Cost Sharing Rule is defined in Section 4. The properties that

can be imposed on a cost sharing rule are presented and extensively discussed in Section 5.

The characterization of the Path Serial Rule in the general context is the object of Section

6. A brief conclusion follows as Section 7. Most proofs are collected in the last section.

2 Overview of the paper

With the original Serial Cost Sharing Rule, agents are ordered according to their demands.

Then, the cost of producing n times the demand of agent 1, which is called an intermediate

demand, is shared equally among all agents. In addition, agents 2 to n must bear equally

the incremental cost of another intermediate demand in which the demand of agents 2 to n

is increased to the level of the demand of agent 2. We then go to the incremental cost of an

intermediate demand in which the demand of agents 3 to n is increased to the level of the

demand of agent 3. This incremental cost is shared equally among agents 3 to n and so on

until total demand is satisfied.

The two rules of Sprumont (1998) and Koster et al. (1998) consist in first ordering

individual demands according to their stand-alone costs. Next, a first intermediate demand

is constructed by reducing demands of agents 2 to n along a ray or an axis down to the point

where their stand-alone costs is the same as for agent 1. A second intermediate demand is

constructed by reducing demands of agents 3 to n down to the point where their stand-alone

costs is the same as for agent 2, etc. Finally, the Moulin-Shenker formula is applied to the

costs of these intermediate demands. The rules bear the names Axial or Radial because of

the way in which individual demands are reduced to construct intermediate demands.

Rays are particular cases of increasing paths. In some circumstances, it may be natural

to adjust all components of the demand of an agent along the ray to which it belongs.

In others, this may not be appropriate. For example, it might happen that some of the

components should not vary at all or should vary in discontinuous ways while others vary

continuously. As pointed out by Koster et al. (1998) in their Remark 3.7, one can envisage

other extensions of the Serial Rule using more general paths to scale the demands. This idea

leads us to define the Path Serial Rule.

The original Serial Cost Sharing Rule has a simple characterization: it is the only cost

sharing rule to satisfy Equal Treatment of Equals (ETE) and Independence of Larger De-

mands (ILD). (ETE) says that equal demands must be treated identically while (ILD) re-
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quires that the cost share of an agent be independent of the size of the demands that are

larger than his or hers. In more general contexts, these conditions do not have much bite

since demands are not comparable. Sprumont (1998) proposes stronger forms of these con-

ditions, which he calls respectively Symmetry (S) and the Serial Principle (SP). The idea

behind Symmetry is that if the demands of two agents can be interchanged without altering

the total cost, then the two goods should be deemed comparable. Then, if the two agents

request the same quantity of these two goods, they should be charged the same amount.

A stronger property introduced by Koster et al. (1998) is Equal Treatment of Equivalent

Demands (ETV), where demands are equivalent when they have the same stand-alone cost.

(ILD) implies the ordering of the agents according to their demands, which may be

impossible in more general contexts. Sprumont’s answer is to order agents according to the

cost shares produced by the rule. Then, the Serial Principle says that an agent who pays

less than another agent should not see her cost share change if this other agent increases his

demand. Koster et al. (1998) define a weaker form of this property called the Radial Serial

Principle (RSP), which says that an agent who pays less than another agent should not see

her cost share change if this other agent increases his demand along the ray on which it lays.

In the more general context considered here, this property becomes the Path Serial Principle

(PSP). Thus, the Axial, the Radial, and the Path Serial Rules are characterized by (ETV)

together with (SP), (RSP), and (PSP) respectively.

Moulin and Shenker (1994) show that the original Serial Cost Sharing Rule enjoys other

remarkable ethical and coherency properties. Among other results, it is characterized by

the combination of Additivity, Separability (for separable cost functions), Free Lunch, and

Fair Ranking. Additivity requires that a rule yields the same results, whether it is applied

separately to different cost elements or to their sums. Separability says that if cost is a linear

function of total demand, then it should be allocated proportionally to the demands. Free

Lunch says that if the cost of an n-fold replication of an agent’s demand is zero, so should

be the cost share of this agent. Fair Ranking, also called No-Domination, says that the cost

shares of agents should be ordered as their demands. It implies (ETE). Separability, Free

Lunch, and Fair Ranking can be transposed to the Path Serial Rule. This is not the case

of Additivity. Indeed, Kolpin (1996) shows that there is no extension of the Serial Rule

satisfying Scale Invariance and Additivity. Thus, none of the Axial, Radial, and Path Serial

Rules satisfies Additivity.

Moulin and Shenker (1994) also prove that, under appropriate assumptions on the cost

function, the original Serial Rule produces cost shares that are monotone with respect to

own and others’ demands and that lay between reasonable bounds. We are able to transpose
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their results to the Path Serial Rule by restricting Monotonicity and Cross Monotonicity to

hold along paths.

The original Serial Rule is also immune to arbitrary changes in the way output is mea-

sured. It satisfies a property introduced by Sprumont (1998) and called Ordinality, which

says that arbitrary changes in the units in which output is measured should not affect cost

shares. A weaker property is Scale Invariance, which prescribes the invariance of cost shares

with respect to linear changes in the units. We extend Ordinality to the general context

considered in this paper by imposing that paths be transformed along the demands and the

cost function to give an equivalent problem. The Path Serial Rule satisfies Ordinality thus

defined. Actually, this rule amounts to applying the original Serial Rule to a path reduction

of the problem at hand.

Coming back to other characterizations, Sprumont (1998) shows that the Axial Serial

Rule is the only cost sharing rule that satisfies Symmetry (S), Rank Independence of Irrel-

evant Agents (RIIA), Independence of Null Agents (INA), Ordinality (O), and the Serial

Principle (SP). (RIIA) imposes that the ranking of two agents’ cost shares depends on their

demands only. Put differently, a change in an agent’s demand must not affect the inter-

personal ranking of others’ cost shares. (INA) states that agents with null demands can be

entirely removed from a problem without altering the outcome for the others. This implies

that agents with null demands pay zero. This condition is stronger than Dummy.

Koster et al. (1998) assert that Sprumont’s characterization of the Axial Serial Rule does

not extend to the Radial Serial Rule in their homogeneous context. We reinforce their result

by showing that (SP) and (S) are incompatible in this context. Thus (SP) and (ETE) are

also incompatible. Since (ETE) is hardly a disputable requirement, (SP) must be weakened

in some way. In as much as (PSP) is a sensible way of weakening (SP), the Path Serial Rule

is probably the best that we can hope for in the general context. This rule satisfies (S),

(RIIA), (INA), and (O) in addition to (PSP). However, we exhibit another rule that satisfies

these properties.

3 The Cost Sharing Problem

A cost sharing problem starts with a profile of demands, to which a cost function is applied.

In some cases, as with serial cost sharing, demands may have to be scaled down to meet

certain conditions. The cost sharing problem must thus be completed by a description of how

this should be made. We address each of these elements in the next three subsections. Then,

we examine special cases of this problem found in the literature and present an example to

illustrate the generality of our approach.
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3.1 The demands

Throughout this paper, there is a fixed set of divisible commodities K = {1, . . . , k} and a
fixed set of agents N = {1, . . . , n} . The commodities may be goods, characteristics serving
to describe needs, or specifications of a certain facility. A commodity may be specific to a

particular agent or a subset of agents. This means that these agents are the only ones to be

able to consume, use, or enjoy the commodity in question. Hence, they will be the only ones

to demand positive quantities of this commodity. As for non specific commodities, they may

be private or public or anything in between.

For each agent i ∈ N, let there be a positive integer mi ≤ k and a one-to-one function
`i : {1, . . . ,mi} → K, specifying the list of commodities that may be requested by this

agent. Next, let Mi be the range of `i, i.e. Mi = {`i(1) , . . . , `i(mi)} . In plain words, Mi

is the subset of commodities for which agent i may request a positive quantity. We assume

that K = ∪ni=1Mi. Thus, for each commodity, there is at least one agent concerned by this

commodity.

The demand of agent i is described by a vector qi ∈ Rmi
+ . The scalar qih is the demand of

commodity `i(h) ∈Mi by agent i. Let M = {M1, . . . ,Mn} with cardinality m =
Pn

i=1mi ≤
nk. A profile of demands is an element Q ∈ Rm+ =

Qn
i=1R

mi
+ . Given a subset S ⊂ N

and Q ∈ Rm+ , let QS ∈ Rm+ be the vector obtained from Q by changing all components

qj, j ∈ N\S, for components of 0.

3.2 The cost function

To complete the description of the problem, we assume that the agents jointly own a facility

to jointly produce any list of commodities that are requested. The cost of producing a

bundle Y ∈ Rm+ is C (Y ) . A special case is Mi = K ∀i and C (Y ) = c (
P

i yi) with c :

Rk+ → R+. In this case, all commodities are homogeneous and private. Following Moulin
and Shenker (1994) and Sprumont (1998), we call these functions and the resulting problems

homogeneous.

A cost function C : Rm+ → R+ also induces n stand-alone cost functions ci : Rmi
+ → R+

defined by:

ci (yi) = C
¡
Y {i}

¢ ∀i ∈ N
We shall say that ci : Rmi

+ → R+ is increasing if yi ¿ y0i implies ci (yi) < ci (y
0
i) . Thus, ci is

increasing if an increase in all components of yi yields a cost increase.

Let C (m) be the class of continuous and non-decreasing functions C : Rm+ → R+ satisfy-
ing:
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• C (0) = 0,

• the functions ci, i = 1, . . . , n, induced by C are increasing,

• ∀Y ∈ Rm+ , ∀i ∈ N : ci (yi) = 0⇒ C (Y ) = C
¡
Y N\{i}

¢
,

• ∀i ∈ N, ∀Y ∈ Rm+ : C
¡
Y N\{i}

¢
= C−i (Y−i) , where C−i is the restriction of C to the

reduced profile Y−i = (y1, . . . , yi−1, yi+1, . . . , yn)

We shall work with this class of functions throughout the paper. Whereas we need the

mild assumption that each ci be increasing, we do not want to impose and we do not need

that C be increasing. In other words, Y ≤ Y 0 ∈ Rm+ and yi ¿ y0i for some i do not necessarily
imply C (Y ) < C (Y 0) . Indeed, C may be the result of a more or less complex aggregation
and optimization procedure. Thus, it is not necessarily increasing in all its components as,

for example, when some public goods are involved. The two last conditions defining C (m)
are natural. A demand from an agent with null stand-alone cost has the same impact on

total cost than a null demand and removing an agent with a null demand from a problem

should have no impact on total cost.

A function C ∈ C (m) is symmetric in the components i and j if C (Y ) = C (Yij) ∀Y ∈
Rm+ where Yij is the vector Y with the components i and j interchanged. This requires that
mi = mj but not necessarilyMi =Mj. A function C ∈ C (nk) is symmetric if it is symmetric
in the components i and j ∀i, j ∈ N. For a symmetric function, we let mi = k ∀i. Thus,
m = nk. A homogeneous function is obviously symmetric.

Note that if C ∈ C (m) is symmetric in the components i and j, then ci (x) = cj (x) ∀x ∈
Rmi
+ . Indeed, ci (x) = C

¡
Y {i}

¢
= C

¡
Y {j}

¢
= cj (x) for any Y ∈ Rm+ such that yi = yj = x.

The middle equality follows from the fact that the difference between Y {i} and Y {j} amounts
to an interchange of the components i and j.

In certain circumstances, the shape of the cost function may be of some importance.

In particular, the behaviour of the incremental cost, i.e. the change in cost following an

increase in the level of production, may matter. These incremental costs may increase or

diminish with the level of production. We now give a formal content to these concepts. In the

following definition, we treat two increments in two different components of Y as equivalent

if their impacts on their respective stand-alone costs are the same. In the case of a single

private good, this would imply identical increments.

6



Definition 1 A cost function C ∈ C (m) satisfies Diminishing Incremental Cost (DIC) if
for any triple (Y, Y 0, Z) ∈ R3m+ such that Y ≤ Y 0 and any pair (i, j) ∈ N2 such that

ci (yi) ≥ cj (yj) and ci (yi + zi)− ci (yi) = cj (yj + zj)− cj (yj) , the following holds:

C
¡
Y + Z{i}

¢− C (Y ) ≥ C ¡Y 0 + Z{j}¢− C (Y 0) (1)

It satisfies Increasing Incremental Cost (IIC) if −C satisfies (DIC).

Remark 1 Why should we insist on (1) to declare C as being a (DIC) function? Note that
the condition ci (yi + zi)− ci (yi) = cj (yj + zj)− cj (yj) may be written as:

C
¡
Y {i} + Z{i}

¢− C ¡Y {i}¢ = C ¡Y {j} + Z{j}¢− C ¡Y {j}¢ (2)

Adding Y {j} and Y {i} to the arguments of the left and right members respectively should
bring a lower value for both. However, the condition ci (yi) ≥ cj (yj) means that yi is in a
sense “larger” than yj. Thus Y {i} is “larger” than Y {j} and if (DIC) holds, we should expect
the value of the right member of (2) to decrease more than the left one, i.e. C

¡
Y {i,j} + Z{i}

¢−
C
¡
Y {i,j}

¢ ≥ C ¡Y {i,j} + Z{j}¢ − C ¡Y {i,j}¢ . From this inequality, we may say that Z{i} is
“larger” than Z{j}. Thus, we should have C

¡
Y + Z{i}

¢ − C (Y ) ≥ C ¡Y + Z{j}¢ − C (Y ) .
Finally, changing Y for Y 0 in the right member can just reinforce this inequality to meet the
claim that C is a (DIC) function. This is precisely what (1) says.

Note that we may have i = j. Actually, for homogeneous C2 functions, (DIC) is merely

an implication of a property of concavity, namely the second order directional derivatives

are non-positive. (DIC) has itself several implications, which are recorded in the following

lemma.

Lemma 1 Let C ∈ C (m) satisfies (DIC), then:

1. For any triple (Y, Y 0, Z) ∈ R3m+ such that Y ≤ Y 0, the following must hold:

C (Y + Z)− C (Y ) ≥ C (Y 0 + Z)− C (Y 0) (3)

2. For any Z ∈ Rm+ , let I (Z) = {i ∈ N : zi 6= 0} . Then, for any triple (Y, Y 0, Z) ∈ R3m+
such that Y ≤ Y 0, Y + Z ≤ Y 0 + Z{h} for some h ∈ I (Z) , ci (yi) ≥ ch (yh) and

ci (yi + zi)− ci (yi) = ch (yh + zh)− ch (yh) ∀i ∈ I (Z) , the following must hold:

C (Y + Z)− C (Y ) ≥ #I (Z) ¡C ¡Y 0 + Z{h}¢− C (Y 0)¢ (4)
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3. For any pair (Y, Y 0) ∈ Rm+ × Rm+ such that Y ≤ Y 0 we have:
nX
i=1

ci (y
0
i)−

nX
i=1

ci (yi) ≥ C (Y 0)− C (Y ) (5)

The above propositions hold with the reverse inequality if C satisfies (IIC).

The proof is given in subsection 8.1.

Remark 2 Condition (3) by itself could be viewed as a (DIC) condition. However, while
(5) follows from (3), we need the stronger Definition 1 to get (4), which will be needed to

prove path cross monotonicity. Since condition (5) can be written as
nP
i=1

ci (y
0
i) − C (Y 0) ≥

nP
i=1

ci (yi)− C (Y ) , it may be called “increasing benefit from cooperation”.

3.3 The paths

Serial cost sharing requires that larger demands be initially scaled down to a level equivalent

to smaller ones. In some circumstances, it may be natural to adjust all components of the

demand of an agent along the ray to which it belongs, i.e. proportionally. This is the method

used in the Radial Serial Rule. In other circumstances, this may not be appropriate. As

pointed out by Koster et al. (1998) in their Remark 3.7, one can envisage other extensions

of the serial rule using more general paths to scale the demands. This is the idea developed

in this paper. This approach requires that we add the rules according to which demands

must be scaled to Q and C in the definition of a cost sharing problem.

For each i ∈ N, consider functions hi : Rmi+1
+ → Rmi

+ , which map each y ∈ Rmi
+ and

τ ∈ R+ onto a vector hi (y, τ) ∈ Rmi
+ . Assume that hi (y, · ) is non-decreasing, increasing

in at least one component, and that for each y ∈ Rmi
+ , there exists a τ 0 ∈ R+ (necessarily

unique) such that hi (y, τ 0) = y. Let Hi be the class of these functions. Then, hi (y,R+) is
the path through y defined by hi (y, · ) . Clearly, the class {hi (y,R+) : y ∈ Rmi

+ } scans Rmi
+

since hi is defined for each y ∈ Rmi
+ . Finally, let h

R
i : R

mi
+ \ {0} × R+ → Rmi

+ be defined by

hRi (y, τ) = τy. This function defines the ray through a y 6= 0.
We do not impose that hi (y, 0) = 0 and that hi (y, · ) be continuous and increasing

in all components. However, given a function C ∈ C (m) , we restrict ourselves to the
class of functions Hi (ci) ⊂ Hi for which ci (hi (y, · )) is continuous and increasing, with
ci (hi (y, 0)) = 0. Since ci (0) = 0 and since ci is increasing, this implies that there is at least

one null component in hi (y, 0) . In words, a path starts on an axis but not necessarily at
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the origin. The cost of the bundle at the starting point is null and increasing thereafter.

This definition of Hi (ci) insures that for any α ∈ R+, there is a unique τα such that

ci (hi (y, τα)) = α.

LetH (C) = H1 (c1)×· · ·×Hn (cn) , H (Y, τ) = (h1 (y1, τ 1) , . . . , hn (yn, τn)), and C (m)×
H = {(C,H) : C ∈ C (m) and H ∈ H (C)} . A cost sharing problem is a triple (Q,C,H) ∈
Rm+ ×C (m)×H (C) . Accordingly, a cost sharing rule is a mapping ξ : Rm+ ×C (m)×H→
Rn+ satisfying the budget balance condition:

nP
i=1

ξi (Q,C,H) = C (Q)

The vector ξ (Q,C,H) is the list of cost shares for the problem (Q,C,H) .

The choice of a particular form for hi may be dictated by technical considerations. For

example, changing some of the components might not make sense while others may have to

vary in discontinuous ways and others continuously. The choice of the paths may also come

from the agents themselves, along with their demands. For example, qi is presumably the

result of an optimization problem, say:

qi = argmax
y∈Y

U (y, ci (y))

where U is a utility or a profit function and Y ⊂ Rmi
+ . Now, suppose that the agent

is restricted to demands that have stand-alone cost α, i.e. to the isocost set I (α) =

{y ∈ Y : ci (y) = α}. Then, the choice of the agent, if rational, would be:

γ (α) = arg max
y∈I(α)

U(y,α)

Under appropriate assumptions on Y,U, and ci, γ would be a single value and increasing

function from R+ to Rmi
+ . It would describe a path in Rmi

+ . In particular, one would have

γ (ci (qi)) = qi and ci (γ (α)) = α. We write hi (qi,α) instead of γ (α) to insist on the fact

that this path goes trough qi. This also means that the same function may describe different

paths. Actually, hi may simply be seen as a scaling rule from a given demand. Note that

we do not impose the normalisation ci (hi (qi, τ)) = τ .

3.4 Special cases

By imposing some restrictions on the sets of commodities, on C, or on H, we obtain some

of the special cases discussed in the literature. For all of them, hi = hRi . It defines a ray

through y when not an axis or the positive real half-line. Table 1 summarizes their other

9



features. Sprumont (1998) takes the commodities as being personalized. With some abuse

of notation, we write Mi = {i} ∀i to describe this case, which implies M = K = N . We

shall write these special problems as pairs (Q,C) ∈ Rm+ × C (m) .

Moulin-Shenker k = 1 Mi = K ∀i C (Y ) = c (
P

i yi)

Koster et al. (1998) Mi = K ∀i C (Y ) = c (
P

i yi)

Sprumont (1998) k = n Mi = {i} ∀i

Table 1: Special cases

From Table 1, one can see that none of the two problems considered by Sprumont (1998)

and Koster et al. (1998) is more general than the other. Koster et al. consider homogeneous

problems while for Sprumont, there is only one commodity for each agent. Our problem

generalizes both in removing all restrictions on the sets of commodities and on the cost

function. Thus, there may be at least one agent i such that mi > 1. There may also be at

least one agent i such that Mi 6= K. The latter implies that there are at least two agents i
and j such that Mi 6=Mj, which in turn implies that the problem is not homogeneous. The

problems considered may contain any mix of private, public, and specific commodities. In

addition, the hi define paths that are not necessarily rays.

3.5 An example

We conclude this section with an example that illustrates the kind of problem that can fit

in this general framework. Suppose there are three cities A,B and C that must be supplied

with natural gas from point S. Thus, a pipeline must be build to link the three cities to the

supply S. The possible links are represented in Figure 1. Thus, B could be fed directly from

S or through A.

Let there be two periods, summer and winter. Each city has a demand in each period

and this demand is expected to remain the same forever. Thus, the profile of demands is a

sextuple:

Q = ((qas, qaw) , (qbs, qbw) , (qcs, qcw))

Not only is gas in winter different from gas in summer but gas available in one city is different

from gas available in a different city. Gas is a specific good. Indeed, supplying additional

gas to A has an impact on costs that is different from the impact on costs of supplying the

same quantity to B or C.

10



S A C

B

1

23

4

Figure 1: A Network of pipelines

A network of pipelines may be represented by a γ ∈ R4+ specifying the capacity of each
of the four segments AB,AC, SA, SB. If we assume that the marginal cost of a segment is

decreasing with its capacity and if cost is to be minimized, only one of the segments AB (1)

and SB (4) will be build. In other words, only two networks are possible: γ1 with 0 capacity

on the last segment and γ2 with 0 capacity on the first segment. Capacity on each segment

of each network depends on the profile of demands. In other words, γ1 and γ2 are functions

of Q. More precisely, γ1 : R6+ → R4+ is defined by:

γ1 (Q) = (max {qbs, qbw} , max {qcs, qcw} , max {qas + qbs + qcs, qaw + qbw + qcw} , 0)

Indeed, the capacities on segments AB (1) and AC (2) must be sufficient to carry the largest

quantities required by B and C respectively over the two periods. Moreover, the capacity

on segment SA (3) must be sufficient to carry the largest of the total quantity required by

the three cities over the two periods. γ2 : R6+ → R4+ is defined in a similar way.

γ2 (Q) = (0, max {qcs, qcw} , max {qbs + qcs, qbw + qcw} , max {qbs, qbw})

Suppose that the cost of building a network γ is given by a function c : R4+ → R+. Then,
C would be given by:

C (Q) = min {c (γ1 (Q)) , c (γ2 (Q))}

No need to say, thus far this problem does not fit the frameworks considered by Sprumont

or Koster et al. (1998). In addition, customers in each city may want that, if needed, the

demand be scaled in a non proportional way. For example, they may ask that if scaling down

is needed, the largest demand be first reduced until it reaches the size of the smallest demand

and that both demands be then reduced proportionally. Scaling up in a proportional way
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would be acceptable. The prescribed path is described by the following function hi : R3+ →
R2+ :

hi (y, τ) =

(
(min {max {τys, ys} , τyw} , τyw) if ys ≤ yw
(τys, min {max {τyw, yw} , τys}) if ys > yw

This function belongs to Hi. One can insure that it belongs to Hi(ci) by imposing that ci be

increasing, be it slightly, with respect to both yis and yiw.

4 The Path Serial Cost Sharing Rule

The original version of the Serial Cost Sharing Rule has been introduced by Shenker (1990)

and characterized by Moulin and Shenker (1992, 1994) in the context where the individuals

request a single private good, i.e. k = 1 and C (Q) = c (
P

i qi) . Before presenting an

extension of this rule to the general context considered here, we give the definition of the

Direct Serial Rule introduced by Sprumont (1998). This is simply the Moulin-Shenker rule

applied to a problem (Q,C) ∈ Rn+ × C (n) that is not necessarily homogeneous. This direct
rule will prove useful in assessing the properties of the Path Serial Cost Sharing Rule.

Definition 2 (The Direct Serial Rule) Consider a problem (Q,C) ∈ Rn+ × C (n) where
Q is naturally ordered, i.e. q1 ≤ . . . ≤ qn. Then, consider the intermediate request vectors
Qi = (qi1, . . . , q

i
n) ∈ Rn+, i = 1, . . . , n, defined by qij = min {qi, qj} ∀j ∈ N. The Direct Serial

Rule ξDS : Rn+ ×C (n)→ Rn+ is defined by:

ξDSi (Q,C) =
iX
j=1

C (Qj)− C (Qj−1)
n+ 1− j , i = 1, . . . , n.

In the context of Moulin and Shenker, C (Q1) = c (nq1) , C (Q
2) = c (q1 + (n− 1)q2) ,

C (Q3) = c (q1 + q2 + (n− 2)q3) , and so on. Thus all agents share equally the cost c (nq1) of a
list of identical demands (q1, . . . , q1) .Then, agents 2, . . . , n shares equally c (q1 + (n− 1)q2)−
c (nq1) , i.e. the cost increase when the demand is changed from (q1, . . . , q1) to (q1, q2, . . . , q2),

and so on. Note that in this context, q1 ≤ . . . ≤ qn is equivalent to c1 (q1) ≤ c2 (q2) ≤ . . . ≤
cn (qn) . This is not so for a more general problem (Q,C) ∈ Rn+×C (n) since different agents
may request different commodities. Actually, the order between agents may depend on the

units in which these demands are expressed and thus, the cost shares may depend on this

choice. This is certainly something that we want to avoid. In addition, with heterogeneous

commodities, (q1, . . . , q1) is not necessarily a vector of identical demands. Thus, there is no
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point in defining intermediate demands in this way. Moreover, this would not work in the

general context where the number of commodities may be different from oneMi to the other.

The Path Serial Rule that we now define takes care of these particularities. In essence,

it consists in first ordering individual demands according to their stand-alone costs. Next,

a first intermediate demand is constructed by reducing demands of agents 2 to n along the

respective paths specified by the hi, down to the points where their stand-alone costs are the

same as for agent 1. A second intermediate demand is constructed by reducing demands of

agents 3 to n along the same paths down to the point where their stand-alone costs are the

same as for agent 2, etc. Finally, the formula of the direct serial rule is applied to the costs

of these intermediate demands.

Definition 3 (The Path Serial Rule) Given a problem (Q,C,H) ∈ Rm+×C (m)×H (C) ,
suppose, without loss of generality, that agents are ranked according to their ci (qi):

c1 (q1) ≤ c2 (q2) ≤ . . . ≤ cn (qn) .

Then, for each i, consider the intermediate demand Qi = (qi1, . . . , q
i
n) ∈ Rm+ defined by:(

qij = qj if cj (qj) ≤ ci (qi)
qij ∈ hj (qj,R+) and cj

¡
qij
¢
= ci (qi) if cj (qj) > ci (qi)

By definition of H (C) , these intermediate demands are uniquely defined. Finally, the cost
allocation of the Path Serial Rule is given by the following formula:

ξPSi (Q,C,H) =
iX
j=1

C (Qj)− C (Qj−1)
n+ 1− j , i = 1, . . . , n.

Remark 3 The Radial Serial Rule ξRS of Koster et al. (1998) may be seen as the Path Serial
Rule ξPS with the use of hRi as the scaling function for all i, and any pair (Q,C) ∈ Rm+×C (m) .
In short, ξRS (Q,C) = ξPS

¡
Q,C,HR

¢
. Both ξPS and ξRS reduce to the Axial Rule ξA of

Sprumont (1998) when Mi = {i} ∀i and all three reduce to the Moulin-Shenker rule in the
context of the single private good. We say that they are Serial Extensions of the original

Serial Rule.

Moulin and Shenker (1992, 1994) show that the Serial Rule, i.e. ξDS, has interesting

ethical and consistency properties in the context of the single private good. Can we say

as much of the Path Serial Rule ξPS? More generally, does there exist a serial extension

that possesses the same or similar interesting properties? Before addressing this question,
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we associate to any problem (Q,C,H) ∈ Rm+ × C (m) × H (C) , a reduced problem of a

particular interest in the following way. Let c−1hiy : R+ → Rmi
+ , i = 1, . . . , n, be defined by

c−1hiy (α) = hi (y, τ) : ci (hi (y, τ)) = α (6)

and cHQ : Rn+ → R+ be defined by:

cHQ (x) = C
¡
c−1h1q1(x1) , . . . , c

−1
hnqn

(xn)
¢

(7)

Finally, write c̆ (Q) = (c1 (q1) , . . . , cn (qn)) . For a problem (Q,C) ∈ Rn+×C (n) , the function
c−1hiy is simply the inverse c

−1
i . In this case, we have

¡
c̆ (Q) , cHQ

¢
=
¡
qA, cA

¢
where the latter

is the normalized problem of Sprumont (1998).

Definition 4 A problem (Q,C) ∈ Rn+ × C (n) is said normalized if
¡
c̆ (Q) , cHQ

¢
= (Q,C) .

In particular, the problem
¡
c̆ (Q) , cHQ

¢ ∈ Rn+ ×C (n) defined by (6-7) is normalized. We call
it the normalized path reduction of (Q,C,H) .

We now state, without proof, a very important lemma.

Lemma 2 The Path Serial Rule ξPS is given by:

ξPS (Q,C,H) = ξDS
¡
c̆ (Q) , cHQ

¢
i.e. by applying the Direct Serial Rule to the normalized path reduction of the problem

(Q,C,H).

The last lemma says that ξPS consists in applying ξDS to a problem in which each vector

of demands is replaced by its stand alone cost as with ξA. However, there is more to it than

just a transformation of vectors of quantities into a scalar. The definition of the cost function

that applies to the reduced demands involves a projection of each demand onto a manifold

of dimension one, i.e. a path.

Not surprisingly, there is a cost associated with this reduction, even in the homogeneous

case. As we shall see, ξPS does not satisfy all of the properties that ξDS meets in the single

specific good context of Sprumont or the single private good context of Moulin-Shenker.

However, since ξPS is tantamount to applying the Axial Rule to the normalized path reduc-

tion of the problem, it satisfies a restriction of some of these properties to the paths along

which the rules operates. This idea is developed somewhat more formally in the next remark.

Remark 4 Take any property (A) that says how a cost sharing rule should behave as a
result of a change say ∆Q in the demand Q. It may not be satisfied in the general context
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by a given rule ξ. However, given a problem (Q,C,H) ∈ Rm+ ×C (m)×H (C) , consider the
weakening of (A) to which we give the name (PA) and which is obtained by requiring the

predicate of (A) to hold only for changes ∆qi taking place along the path hi (qi,R+) . Clearly,
if a rule ξ is defined by applying some other rule ξN to the reduced problem

¡
c̆ (Q) , cHQ

¢
,

i.e. if ξ (Q,C,H) = ξN
¡
c̆ (Q) , cHQ

¢
, then ξ satisfies (PA) whenever ξN satisfies (A) on the

class of normalized problems of Rn+×C (n) . Conversely, if ξ satisfies (PA), then ξN satisfies

(A) on the class of normalized problems of Rn+ × C (n) . Indeed, ξ may be applied to a
normalized problem (Q,C) ∈ Rn+ ×C (n) . For such a problem,

¡
c̆ (Q) , cHQ

¢
= (Q,C) , hence

ξ (Q,C) = ξN (Q,C) . Moreover, in Rn+ × C (n) , (PA) reduces to (A).

5 Properties of Cost Sharing Rules

We expect a cost sharing rule to produce coherent results and to obey some equity criteria.

The first subsection deals with the requirement that cost shares be independent of the units

in which demands are expressed. The other subsections present and relate equity criteria.

5.1 Ordinality

Almost everybody would agree with the requirement that final cost shares should not depend

on the units in which demands are measured. In the literature on cost sharing and game

theory, one often finds a condition called Scale Invariance (SI), which says that linear but

otherwise arbitrary and independent rescalings of the units should not affect final cost shares.

Sprumont (1998) argues that no rescaling of the units should affect the cost shares, not only

linear ones. He calls a rule that satisfies this requirement ordinal. We transpose his definition

to the general context of this paper. This requires transforming the scaling functions hi in

addition to the units and the cost function.

Let F (m) be the class of separable, increasing and one-to-one correspondences f : Rm+ →
Rm+ . More precisely, each f ∈ F (m) is a list of m increasing one-to-one correspondences fi` :

R+ → R+, ` = `i(1) , . . . , `i(mi) ; i = 1, . . . , n. Let f (Y ) = (f1 (y1) , . . . , fn (yn)) ∀Y ∈ Rm+ .
We define two problems (Q,C,H) ∈ Rm+ × C (m)×H (C) and (Q0, C 0, H 0) ∈ Rm+ × C (m)×
H (C 0) as ordinally equivalent if there exists a transformation f ∈ F (m) such that:

• Q = f (Q0) ,

• hi (qi,R+) = fi (h0i (q0i,R+)) or equivalently hi (fi (q0i) ,R+) = fi (h0i (q0i,R+)) ∀i ∈ N,

• C 0 (Y ) = C (f (Y )) ∀Y ∈ Rm+ .
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Under this definition, the demand of each commodity by each agent may be transformed by

any increasing function. This function may be different from one commodity to the other

and from one agent to the other. However, separability requires that the transformation of

each unit be done independently from the demand for the other commodities. The path

h0i (q
0
i,R+) is also transformed into the path hi (qi,R+) and the cost function C into C 0 along

the transformation of q0i into qi.

Definition 5 A cost sharing rule ξ : Rm+ × C (m) ×H → Rn+ satisfies Ordinality (O) if for
any pair of ordinally equivalent problems (Q,C,H) ∈ Rm+×C (m)×H (C) and (Q0, C 0, H 0) ∈
Rm+ ×C (m)×H (C 0), we have ξ (Q,C,H) = ξ (Q0, C 0, H 0).

We now give an example of two ordinally equivalent problems. Consider a problem

(Q,C,H) ∈ R4+ × C (4)×H (C) with q1 = (1, 1) , q2 = (1, 4) ,
C (Y ) = (y11 + y12 + y21 + y22)

and hi = hRi for i = 1, 2. Next, let f1 : R2+ → R2+ be defined by f2 (y1, y2) = (y1, y2) and

f2 : R2+ → R2+ by f2 (y1, y2) = (y1, y
2
2) . We obtain an equivalent problem (Q0, C 0, H 0) ∈

R4+ ×C (4)×H (C) by defining:
q01 = f

−1
1 (q1) = (1, 1) ; q02 = f

−1
2 (q2) = (1, 2)

C 0 (Y ) = C (f (Y )) = y11 + y12 + y21 + y222

H 0 must meet the condition hi (fi (q0i) ,R+) = fi (h
0
i (q

0
i,R+)) or equivalently h0i (q0i,R+) =

f−1i (hi (fi (q
0
i) ,R+)) , i = 1, 2. Accordingly, we set

h0i (y, τ) = f
−1
i (hi (fi (y) , τ)) ∀τ ∈ R+, i = 1, 2

Substituting the definitions of fi and hi in the preceding identity, we get h01 = h1 and:

h02 (y, τ) = h2
¡
τy1,
√
τy2
¢ ∀τ ∈ R+

While h2 defines rays, this is not the case of h02.

Remark 5 If f is linear, then (O) reduces to the standard Scale Invariance. In particular, f
transforms rays into rays. The above example shows that this is not necessarily the case with

an arbitrary f ∈ F (m) . Consequently, the Radial Cost Sharing rule does not satisfy (O)
since this rule operates along rays. Put differently, the requirement that rays be transformed

into rays places some restriction on the class of admissible transformation functions. This

restriction led Koster et al. (1998) to define a weaker invariance condition that they name

Radial Ordinality.
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Interestingly, two ordinally equivalent problems have the same path reduction. Thus a

cost sharing rule that is defined on the path reduction of a problem satisfies (O).

Lemma 3 Given a pair of ordinal equivalent problems (Q,C,H) ∈ Rm+ ×C (m)×H (C) and
(Q0, C 0, H 0) ∈ Rm+ × C (m)×H (C 0), we have

¡
c̆ (Q) , cHQ

¢
=
¡
c̆ (Q0) , cH

0
Q0
¢
.

The proof is given in subsection 8.2. Combining Lemmas 2 and 3, we obtain the following

corollary.

Corollary 4 The Path Serial Rule ξPS satisfies (O).

5.2 Equal Treatment of Equivalents

The two essential features of the Serial Cost Sharing Rule introduced by Moulin and Shenker

(1992) is the equal treatment of equal demands and the protection it offers to agents with

small requests against larger ones. In the general context of this paper, requests are not

necessarily comparable in terms of quantities. Sprumont (1998) and Koster et al. (1998)

address this problem and propose reinforcements of the properties just mentioned. In this

subsection, we review the definitions relating to the equal treatment of equal requests. The

protection against larger requests follows in the next subsection. We start with a property

called Fair Ranking or No-Domination, which implies equal treatment of equal requests for

homogeneous problems.

Definition 6 A cost sharing rule ξ : Rm+ ×C (m)×H→ Rn+ satisfies Fair Ranking (FR) if
for any homogeneous problem (Q,C,H) ∈ Rnk+ ×C (nk)×H (C) and i, j ∈ N, the following
holds:

qi ≤ qj ⇒ ξi (Q,C,H) ≤ ξj (Q,C,H)

Definition 7 A cost sharing rule ξ : Rm+ ×C (m)→ Rn+ satisfies Equal Treatment of Equals
(ETE) if for any homogeneous problem (Q,C,H) ∈ Rnk+ ×C (nk)×H (C) and i, j ∈ N, the
following holds:

qi = qj ⇒ ξi (Q,C,H) = ξj (Q,C,H)

Koster et al. (1998) introduce a stronger condition, based on the notion of equivalent

requests. A very natural criterion to order two individual requests is their stand-alone

cost. Thus, qi and qj are equivalent if ci (qi) = cj (qj) . This criterion yields the following

reinforcement of the above two properties.
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Definition 8 A cost sharing rule ξ : Rm+ × C (m) × H → Rn+ satisfies Fair Ranking with
respect to stand-alone cost (FRV) if for all (Q,C,H) ∈ Rm+ × C (m) ×H (C) and i, j ∈ N,
the following holds:

ci (qi) ≤ cj (qj)⇒ ξi (Q,C,H) ≤ ξj (Q,C,H)

Definition 9 A cost sharing rule ξ : Rm+ × C (m) × H → Rn+ satisfies Equal Treatment of
Equivalents (ETV) if for all (Q,C,H) ∈ Rm+ × C (m) × H (C) and i, j ∈ N, the following
holds:

ci (qi) = cj (qj)⇒ ξi (Q,C,H) = ξj (Q,C,H)

Sprumont (1998) uses the property of Symmetry instead, which can also be extended

to the general context. Comparing the requests of two different agents does not in general

make sense. It does make sense however if the two lists of commodities requested by the

two agents are sufficiently similar. One circumstance in which the commodities requested

by agent i can be declared similar to those requested by agent j is when the cost function is

symmetric in the components i and j, i.e. C (Y ) = C (Yij) ∀Y ∈ Rm+ .

Definition 10 A cost sharing rule ξ : Rm+ × C (m)×H→ Rn+ satisfies Symmetry (S) if for
all (Q,C,H) ∈ Rm+×C (m)×H (C) and i, j ∈ N such that C is symmetric in the components

i and j, the following holds:

qi = qj ⇒ ξi (Q,C,H) = ξj (Q,C,H)

Remark 6 (ETV) implies (S), which implies (ETE). The converse is not true in general.
(ETE) does not imply (S) since a cost function may be symmetric without being homoge-

neous. Only for homogeneous problems are (S) and (ETE) identical. (S) does not imply

(ETV) since we can have ci (qi) = ci (qj) without having qi = qj.

Remark 7 The fact that ξDS satisfies (FR) on the class of normalized problems implies
that ξPS satisfies (FRV). More generally, let a rule ξ : Rm+ × C (m) × H → Rn+ be defined
from a rule ξN : Rn+ ×C (n)→ Rn+ by ξ (Q,C,H) = ξN

¡
c̆ (Q) , cHQ

¢
. Then, ξ satisfies (FRV)

if and only ξN satisfies (FR) on the class of normalized problems. As a corollary, ξ satisfies

(ETV) if and only if ξN satisfies (ETE) on the class of normalized problems.

5.3 The Serial Principle

This subsection is devoted to the protection of agents with small demands with respect to

larger demands. The original condition has been defined for the single private good case.
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We first extend the definition to the general context. However, this condition does not have

much bite in this context since demands are not necessarily comparable. Sprumont (1998)

proposes a more powerful condition called the Serial Principle. We show that the latter is

incompatible with Equal Treatment of Equals. This leads us to weaken the Serial Principle

into the Path Serial Principle. The subsection ends with two related conditions called Rank

Independence of Irrelevant Agents and Independence of Null Agents.

Definition 11 A cost sharing rule ξ : Rm+ × C (m) × H → Rn+ satisfies Independence of
Larger Demands (ILD) if for two cost sharing problems (Q,C,H) and (Q0, C,H 0) ∈ Rnk+ ×
C (nk)×H (C) such that Mi = K ∀i and any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : qj < qi
q0j ≥ qj ∀j ∈ N\ {i} : qi ≤ qj

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H 0)

In the general context, (ILD) has no real content since demands cannot be compared. In

the homogeneous case, things are better but the condition remains weak since the relation

≤ on Rk is not complete. Not all demands can be compared. To obviate these problems,
Sprumont (1998) proposes that the demands be ordered according to the cost shares produced

by the cost sharing rule itself. This yields the Serial Principle, which requires that an agent’s

cost share be unaffected by increases in the demands of those who initially pay more than

him.

Definition 12 A cost sharing rule ξ : Rm+ × C (m)×H→ Rn+ satisfies the Serial Principle
(SP) if for two cost sharing problems (Q,C,H) and (Q0, C,H 0) ∈ Rm+ ×C (m)×H (C) , and
any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : ξj (Q,C,H) < ξi (Q,C,H)

q0j ≥ qj ∀j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H)

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H 0)

In the general context of this paper, (SP) is a very demanding condition. It is not

necessarily satisfied by a serial extension. Actually, it is incompatible with (ETE), hence

with (ETV), which is a basic property of the Path Serial Rule.
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Theorem 5 If mi ≥ 2 for at least one i, there does not exist a cost sharing rule that satisfies
(ETE) and (SP).

The proof is given in subsection 8.3. Since (ETE) is a hardly disputable equity condition,

the only avenue left is to weaken the Serial Principle (SP) into a less demanding condition.

In line with Remark 4, we consider a restriction of (SP) to paths. In the original definitions

of (ILD) and (PS), H plays no role. Hence, we require that their extensions to the general

context hold whetherH is changed along withQ or not. This is different in the next definition

as we require that qj ∈ hj
¡
q0j,R+

¢
.

Definition 13 A cost sharing rule ξ : Rm+ × C (m) × H → Rn+ satisfies the Path Serial
Principle (PSP) if for any two cost sharing problems (Q,C,H) and (Q0, C,H) ∈ Rm+ ×
C (m)×H (C), any i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : ξj (Q,C,H) < ξi (Q,C,H)

qj ∈ hj
¡
q0j,R+

¢
and q0j ≥ qj ∀j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H)

the following holds:

ξi (Q,C,H) = ξi (Q
0, C,H)

Remark 8 Since ξDS satisfies (SP) in Rn+×C (n) , applying the same reasoning as in Remark
4 yields: ξPS satisfies (PSP). Actually, the fact that ξDS satisfies (ILD) on the class of

normalized problems in Rn+ × C (n) yields the same conclusion.
We conclude this section by transposing to the general context two properties introduced

by Sprumont (1998). The first imposes on a cost sharing rule that the ranking of two agents’

cost shares depends on their demands only. Thus, a change in an agent’s demand must not

affect the interpersonal ranking of the other cost shares. The second says that an agent

with a null stand-alone cost can be entirely removed from any problem without altering the

outcome for the other agents. This implies of course that agents with null demands pay zero.

Both are satisfied by the Path Serial Rule.

Definition 14 A cost sharing rule ξ : Rm+ × C (m) ×H → Rn+ satisfies Rank Independence
of Irrelevant Agents (RIIA) if for two cost sharing problems (Q,C,H) and (Q0, C,H) ∈
Rm+ ×C (m)×H (C) such that qi = q0i and qj = q0j for some i, j ∈ N, then:

ξi (Q,C,H) ≤ ξj (Q,C,H)⇔ ξi (Q
0, C,H 0) ≤ ξj (Q

0, C,H 0)
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Definition 15 Given a profile Q ∈ Rm+ , let ξN\{i} be the restriction of ξ to the reduce profile
Q−i = (q1, . . . , qi−1, qi+1, . . . , qn) and C−i andH−i be the restrictions of C andH respectively
to Q−i. A cost sharing rule ξ : Rm+ → Rn+ ×H satisfies Independence of Null Agents (INA)

if for any (Q,C,H) ∈ Rm+ ×C (m)×H (C) and any i ∈ N, the following holds:

ci (qi) = 0⇒ ξ
N\{i}
j (Q−i, C−i,H−i) = ξj (Q,C,H) ∀j ∈ N\ {i}

Remark 9 Note that the premise of the condition as defined by Sprumont reads qi = 0.

Thus, our condition is slightly stronger than his.

Remark 10 (INA) implies that ξi (Q,C,H) = 0 ∀i : qi = 0, a property called no exploita-
tion by some authors. However (INA) says more. If an agent with a null stand-alone cost is

removed from the problem, this must not change the contributions of the remaining agents.

This is a form of consistency. The Path Serial Principle implies the first part of (INA) but

not the latter. Also note that (INA) implies Free Lunch, which Moulin and Shenker (1994)

use to characterize the Serial Rule in the single private good context. It also implies another

condition called Dummy in cooperative game theory and which says that if an agent does

not affect the cost of any coalition that she might join, then her cost share must be zero.

5.4 Monotonicity

Another ethical condition that has received much attention in the literature on cost sharing

is monotonicity of the cost shares with respect to own demands. The Path Serial Rule does

not satisfy the original monotonicity condition in the general context but it satisfies a weaker

form of this condition, called path monotonicity. Also examined in this subsection is the

behaviour of the cost shares with respect to others’ demands.

Definition 16 A cost sharing rule ξ : Rm+×C (m)×H→ Rn+ satisfies Demand Monotonicity
(DM) if for two problems (Q,C,H) and (Q0, C,H 0) ∈ Rm+ × C (m)×H (C) , and any i ∈ N
such that qi ≤ q0i and qj = q0j ∀j ∈ N\ {i} , we have ξi (Q,C,H) ≤ ξi (Q

0, C,H 0) .

(DM) says that an agent should expect to pay more if he increases his demand. This

does not imply that the other agents will not pay more as we shall see. Sprumont (1998)

proves that the Axial Rule ξDS satisfies (DM) in the context where Mi = {i} ∀i. We show
in Téjédo-Truchon (2001) that this is not the case of the Radial Serial Rule ξRS even in the

homogeneous context. A fortiori, the Path Serial Rule ξPS does not satisfy (DM) in the

general context. This motivates the next definition.
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Definition 17 A cost sharing rule ξ : Rm+ × C (m) × H → Rn+ satisfies Path Demand

Monotonicity (PDM) if for two problems (Q,C,H) and (Q0, C,H) ∈ Rm+ × C (m)×H (C) ,
for any i ∈ N such that qi ∈ hi (q0i,R+) , qi ≤ q0i, and qj = q0j ∀j ∈ N\ {i} , we have
ξi (Q,C,H) ≤ ξi (Q

0, C,H) .

Remark 11 According to Remark 4, the fact that ξDS satisfies (DM) in Rn+×C (n) implies
that ξPS satisfies (PDM). Nevertheless, we give a direct proof of this statement below.

There is not much that we can say in general on how the share of an agent i varies under

ξPS with the demand of another agent k whose stand-alone cost ck(qk) is lower that ci(qi) .

However, we shall show that this share cannot decrease when the cost function satisfies

increasing incremental cost (IIC) and that it cannot increase when the cost function satisfies

decreasing incremental cost (DIC).

Definition 18 A cost sharing rule ξ : Rm+ × C (m)×H→ Rn+ satisfies Positive Path Cross
Monotonicity (PPCM) if for two problems (Q,C,H) and (Q0, C,H) ∈ Rm+ ×C (m)×H (C)
such that qk ∈ hk (q0k,R+) and qk ≤ q0k for some k and qj = q0j ∀j 6= k, we have ξi (Q,C,H) ≤
ξi (Q

0, C,H) ∀i ∈ N/ {k} , i.e. ξi is a non-decreasing function along the path hk (qk,R+) .
It satisfies Negative Path Cross Monotonicity (NPCM) if, under the same circumstances,

ξi (Q,C,H) ≥ ξi (Q
0, C,H) ∀i ∈ N/ {k} .

Theorem 6 ξPS satisfies (PM). It also satisfies (PPCM) or (NPCM) for any class of prob-

lems such that C is respectively an IIC or a DIC cost function.

The proof is given in subsection 8.4 for (PM) and (PPCM). It suffices to change the sense

of the relevant inequalities to get (NPCM). Of course, we should expect the relation between

ξPSi (Q,C,H) and ξPSi (Q0, C,H) to hold when more than one component of Q is increased
to give Q0. This is recorded in the following corollary.

Corollary 7 Consider two problems (Q,C,H) and (Q0, C,H) ∈ Rm+ × C (m)×H (C) such
that C is an IIC cost function, qj ∈ hj

¡
q0j,R+

¢
and qj ≤ q0j ∀j. Then ξPSi (Q,C,H) ≤

ξPSi (Q0, C,H) ∀i ∈ N. Similarly, ξPSi (Q,C,H) ≥ ξPSi (Q0, C,H) ∀i ∈ N when C is a DIC

cost function.

The proof is given in subsection 8.5.

Remark 12 Since the Axial Rule satisfies Ordinality, we can invoke Remark 4 without the
restriction to normalized problems, to assert that this rule also satisfies Positive or Negative
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Cross Monotonicity for any class of problems in Rn+ × C (n) such that C is respectively an
IIC or a DIC cost function.

5.5 Bounds for Cost Shares

If they are free to decide, agents will choose to participate in a cost sharing problem only

if they are guaranteed that their share of the cost will not be larger than their stand-alone

cost. This is a condition that Moulin and Shenker (1992) calls participation. We show

that the Path Serial Rule meets this condition whenever C satisfies increasing benefit from

cooperation, defined in Remark 2.

Actually, under (DIC), the Path Serial Rule satisfies a stronger property. Any coalition of

agents is guaranteed that their total share of the cost will not be larger than their stand-alone

cost as a coalition. In other words, the list of cost shares produced by the Path Serial Rule

belongs to the core. We can actually go farther. Any cost sharing rule satisfying (PPCM)

has the core property. As far as we can see, the relation between serial cost sharing and the

core has not been addressed before in the literature.

Definition 19 A cost sharing rule ξ : Rm+ × C (m) ×H → Rn+ satisfies Participation for a
problem (Q,C,H) ∈ Rm+ × C (m)×H (C) if ξi (Q,C,H) ≤ ci (qi) ∀i ∈ N.

Theorem 8 The Path Serial Rule ξPS satisfies Participation for any class of problems

(Q,C,H) ∈ Rm+ × C (m)×H (C) such that C satisfies increasing benefit from cooperation.

The proof is given in subsection 8.6.

Definition 20 The Core Co (Q,C,H) of a cost sharing problem (Q,C,H) is the set of cost
shares x ∈ Rn+ that satisfy: X

i∈S
xi ≤ C

¡
QS
¢ ∀S ⊂ NX

i∈N
xi = C (Q)

Definition 21 A cost sharing rule ξ : Rm+ × C (m)×H→ Rn+ has the Core Property (CO)
if ξ (Q,C,H) ∈ Co (Q,C,H) for any problem (Q,C,H) ∈ Rm+ × C (m)×H (C) .

Theorem 9 Any cost sharing rule ξ : Rm+×C (m)×H→ Rn+ satisfying (NPCM) and (INA)
has the core property.

The proof is given in subsection 8.7. The following corollary is immediate.
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Corollary 10 The Path Serial Rule ξPS has the core property (CO) for any class of problems
(Q,C,H) ∈ Rm+ × C (m)×H (C) such that C is a DIC cost function.

Remark 13 Participation follows obviously from the core property. However, we have been
able to establish this property under the weaker increasing benefit from cooperation.

If the cost function satisfies (IIC) instead of (DIC), we should not expect all agents to

be willing to cooperate since at least one of them will have to pay more than its stand-alone

cost. However, there may be circumstances where agents are forced to cooperate even if

the cost function satisfies (IIC). In such a case, we could impose that each agent pays at

least its stand-alone cost. This can be seen as an equity condition, to which Moulin and

Shenker (1992) gives a name. The Path Serial rule satisfies this condition under decreasing

benefit from cooperation. Under (IIC), it satisfies a stronger condition, which is somewhat

the opposite of the core property, namely no coalition can benefit from cooperation.

Definition 22 A cost sharing rule ξ : Rm+ ×C (m)×H→ Rn+ satisfies the Stand-Alone Test
(SAT) for a problem (Q,C,H) ∈ Rm+ × C (m)×H (C) if ξi (Q,C,H) ≥ ci (qi) ∀i ∈ N.

Theorem 11 The Path Serial Rule ξPS respects (SAT) for any class of problems (Q,C,H) ∈
Rm+ ×C (m)×H (C) such that C satisfies decreasing benefit from cooperation.

Proof. Simply reverse the inequalities in the proof of Theorem 8.

Definition 23 A cost sharing rule ξ : Rm+ ×C (m)×H→ Rn+ satisfies the No Benefit from
Cooperation (NBC) for a problem (Q,C,H) ∈ Rm+ ×C (m)×H (C) if:X

i∈S
ξi (Q,C,H) ≥ C

¡
QS
¢ ∀S ⊂ N

Theorem 12 A cost sharing rule ξ : Rm+ ×C (m)×H→ Rn+ satisfying (PPCM) and (INA)
also satisfies (NBC).

Proof. Again, simply reverse the inequalities in the proof of Theorem 9.

Corollary 13 The Path Serial Rule ξPS satisfies (NBC) for any class of problems (Q,C,H) ∈
Rm+ ×C (m)×H (C) such that C is an IIC cost function.
The other question of interest in the case of an IIC cost function is whether there is an

upper bound on the contribution of each agent. In order to introduce such a bound, we first
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define for each i an equal cost demand Q̃i ∈ Rm+ by scaling the demands up or down so as to
satisfy:

qj ∈ hj
¡
q̃ij,R+

¢
and cj

¡
q̃ij
¢
= ci (qi) for j < i

q̃ij = qj for j = i

q̃ij ∈ hj (qj,R+) and cj
¡
q̃ij
¢
= ci (qi) for j > i

We then have the following condition.

Definition 24 A cost sharing rule ξ : Rm+×C (m)×H→ Rn+ satisfies the Equal Cost Bound

(ECB) for a problem (Q,C,H) ∈ Rm+ × C (m)×H (C) if ξi (Q,C,H) ≤
C
³
Q̃i
´

n
∀i ∈ N.

For a homogeneous problem, C
³
Q̃i
´
= c (n qi) . Thus, the condition generalizes the

Unanimity Bound of Moulin and Shenker (1992). Clearly, ξPS satisfies (ECB) for DIC cost

functions. We shall now show that this bound is also satisfied for IIC cost functions.

Theorem 14 The Path Serial Rule ξPS satisfies (ECB) for any class of problems (Q,C,H) ∈
Rm+ ×C (m)×H (C) such that C is an IIC cost function.
Proof. Since q̃ij ≥ qij = qj ∀j < i and q̃ij = qij ∀j ≥ i, applying Corollary 7, we have:

ξPSi (Q,C,H) = ξPSi
¡
Qi, C,H

¢ ≤ ξPSi

³
Q̃i, C,H

´
=
C
³
Q̃i
´

n
∀i ∈ N

5.6 Separation and Additivity

Moulin and Shenker (1994) consider as a basic equity property that the contribution of

each agent be proportional to his or her demand when cost is proportional to the quantities

requested. We generalize this definition.

Definition 25 A cost sharing rule ξ : Rm+ × C (m) ×H → Rn+ satisfies Separation (SC) if
for any problem (Q,C,H) ∈ Rm+ × C (m) ×H (C) , ξi (Q,C,H) = ci (qi) ∀i ∈ N whenever

C is of the form C (Y ) =
X
i∈N

ci (yi) .

Theorem 15 ξPS satisfies (SC).

The proof is given in subsection 8.8.
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Corollary 16 ξPSi (Q,C,H) = λi · qi ∀i ∈ N whenever C is of the form C (Y ) = λ ·Y where
λi ∈ Rmi

+ ∀i ∈ N and λ = (λ1, . . . ,λn) .

This last proposition is actually how Moulin and Shenker (1994) define (SC), more pre-

cisely separable cost, in the single private good context. Another separation condition is

additivity in cost components.

Definition 26 A cost sharing rule ξ : Rm+×C (m)→ Rn+ satisfies Additivity (A) if ∀C1, C2 ∈
C (m) , ∀Q ∈ Rm+ , the following hold:

ξ (Q,C1) + ξ (Q,C2) = ξ (Q,C1 + C2)

Remark 14 Kolpin (1996) shows that there is no extension of the serial rule satisfying Scale
Invariance (SI) and (A). Since the Path Serial Rule satisfies (SI), it does not satisfy (A).

This is also true of the Axial and the Radial Serial Rules.

6 Characterization of the Path Serial Rule

Not surprisingly, paralleling the characterization of the original Serial Rule, the Path Serial

Rule is the only cost sharing rule that satisfies Equal Treatment of Equivalents (ETV) and

the Path Serial Principle (PSP). As far as we can see, there is no other characterization of

this rule, contrary to what exists for the original Serial Rule and the Axial Serial Rule.

Theorem 17 ξPS is the only cost sharing rule that satisfies (ETV) and (PSP).

The proof is given in subsection 8.9.

Remark 15 Combining Remarks 7 and 8, we get the following characterization. If a

rule ξ : Rm+ × C (m) × H → Rn+ is defined from a rule ξN : Rn+ × C (n) → Rn+ by

ξ (Q,C,H) = ξN
¡
c̆ (Q) , cHQ

¢
and if ξN satisfies Independence of Larger Demands (ILD)

and Equal Treatment of Equals (ETE) on the class of normalized problems, then ξ = ξPS.

Sprumont (1998) shows that the Axial Rule ξA : Rn+×C (n)→ Rn+ is the only cost sharing
rule that satisfies Ordinality (O), (SP), Independence of Null Agents (INA), Rank Indepen-

dence of Irrelevant Agents (RIIA), and Symmetry (S) in the context where Mi = {i} ∀i.
From Theorem 5, we know that (ETE) and (SP) are incompatible in the general con-

text. Since (ETE) implies (S), this means that (S) and (SP) are also incompatible. Thus,

Sprumont’s characterization of the Axial Serial rule does not carry over to the Path Serial
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Rule. Could we obtain a positive result by replacing (SP) with (PSP)? As it turns out, ξPS

satisfies (O), (PSP), (INA), (RIIA), and (S) but we exhibit another rule that satisfies the

same conditions. Thus, adding (O), (INA), and (RIIA) to (PSP) does not compensate for

the weakening of (ETV) into (S) in the characterization of ξPS.

To define this other rule, we first partition N into two arbitrary subsets N1 and N2 such

that mi = mj implies {i, j} ⊂ N1 or {i, j} ⊂ N2. Then, given a cost function C ∈ C (m) and
the induced functions c1, . . . , cn, let the functions ĉi : Rmi

+ → R+, i = 1, . . . , n, be defined
by

ĉi (y) =

(
ci (y) if i ∈ N1
θci (y) if i ∈ N2

where θ is any positive real number.

We now define a cost sharing rule that we call ξT exactly as ξPS except that the agents

are ordered according to their ĉi (qi) :

ĉ1 (q1) ≤ ĉ2 (q2) ≤ . . . ≤ ĉn (qn)

and the intermediate demands are constructed using the functions ĉi instead of ci. We note

them Q̂1, . . . , Q̂n. Actually, by varying θ and the partition of N, we can obtain a whole

family of similar rules. Clearly, ξT is different from ξPS whenever θ 6= 1, N1 6= ∅, and N2 6= ∅.

Theorem 18 The rule ξT : Rm+ × C (m) × H → Rn+ satisfies (O), (PSP), (INA), (RIIA),
and (S).

The proof is given in subsection 8.10.

Corollary 19 The Path Serial Rule ξPS satisfies (O), (PSP), (INA), (RIIA), and (S).

Proof. ξPS is ξT with θ = 1.

For homogeneous problems, ξT is exactly ξPS since mi = mj ∀i, j. Thus, there still
remains a possibility that, in the homogeneous context, ξPS could be characterized in a way

similar to the Axial Rule. Actually, as part of their Theorem 4.5, Koster et al. (1998) pretend

to show that in the homogeneous context, a cost sharing rule that satisfies a condition that

they call Radial Ordinality, the Radial Serial Principle, (INA), (RIIA), and (ETE) is the

Radial Serial Rule ξRS. We show in Téjédo-Truchon (2001) that this is false.
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7 Conclusion

We have shown that Serial Cost Sharing Rule can be extended to the general context where

agents request several commodities that can be public, private, or specific to some of them

and where aggregation may be very general. Actually, aggregation may be so general as to

involve optimization. We have defined the Path Serial Rule to meet this kind of problem.

As it names implies, it consists in scaling down the demands along paths that are specified

within the problem in order to construct the intermediate demands that are at the root of

serial cost sharing. Put differently, the Path Serial Rule consists in applying the original

Serial Cost Sharing Rule to a projection of each demand into the specified path.

We have been able to characterize the Path Serial Rule only by the Equal Treatment

of Equivalents (demands) and the Path Serial Principle. The rule satisfies other properties

such as Independence of Null Agents, Rank Independence of Irrelevant Agents, Ordinality,

and Path Demand Monotonicity. However, the latter and the Path Serial Principle are

considerably weaker than the corresponding properties in the single private good context.

Indeed, these properties say something about how cost shares should behave when demands

change along the specified paths. Anything can happen for other types of changes in the

demands.

8 Proofs

8.1 Proof of Lemma 1

1. Applying (1) iteratively to the triples
¡
Y + Z{1,... ,i−1}, Y 0 + Z{1,... ,i−1}, Z

¢
and the pair

(i, i) , i = 1, . . . , n, with Z∅ = 0, to get

C
¡
Y + Z{1,... ,i}

¢− C ¡Y + Z{1,... ,i−1}¢ ≥ C ¡Y 0 + Z{1,... ,i}¢− C ¡Y 0 + Z{1,... ,i−1}¢
and summing member-wise over i yields (3).

2. Consider any increasing sequence S1, S2, . . . , S#I(Z) of proper subsets of I (Z) such

that h belongs only to S#I(Z) and let S0 = ∅. Note that j is the cardinality of Sj and
that Y + ZSj ≤ Y 0, j = 1, . . . ,#I (Z)− 1. Thus, by (DIC), we can write

C
¡
Y + ZSj

¢− C ¡Y + ZSj−1¢ ≥ C ¡Y 0 + Z{h}¢− C (Y 0) , j = 1, . . . ,#I (Z)
with ZS0 = 0. Summing over all j ∈ I (Z) yields (4).
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3. Consider the triples
³
Y {i}, Y 0{i}, Ẑi

´
where Ẑi =

¡
y1, . . . , y1−1, 0, y01+1, . . . , y

0
n

¢
,

i = 1, . . . , n. Then, using (3) on each triple, we get

C
¡
y1, . . . , y1−1, yi, y01+1, . . . , y

0
n

¢− C (0, . . . , 0, yi, 0, . . . , 0)
≥ C

¡
y1, . . . , y1−1, y0i, y

0
1+1, . . . , y

0
n

¢− C (0, . . . , 0, y0i, 0, . . . , 0)
from which:

ci (y
0
i)− ci (yi) = C (0, . . . , 0, y0i, 0, . . . , 0)− C (0, . . . , 0, yi, 0, . . . , 0)

≥ C
¡
y1, . . . , y1−1, y0i, y

0
1+1, . . . , y

0
n

¢− C ¡y1, . . . , y1−1, yi, y01+1, . . . , y0n¢
Summing member-wise over i yields (5).

8.2 Proof of Lemma 3

Let f : Rm+ → Rm+ be the ordinal transformation. Thus, we have Q = f (Q0) , hi (qi,R+) =
fi (h

0 (q0i,R+)) ∀i, and C 0 (Y ) = C (f (Y )) ∀y ∈ Rm+ . The latter implies

c0i (y) = ci (fi (y)) ∀y ∈ Rmi
+ ∀i ∈ N

and:

c0i (q
0
i) = ci (qi) ∀i ∈ N

In short, c̆ (Q0) = c̆ (Q) . Next, we show that cH
0

Q0 = c
H
Q . Given a x ∈ Rn+ and a i ∈ N, let τ

and τ 0 be two real numbers such that

ci (hi (qi, τ)) = xi = c
0
i (h

0
i (q

0
i, τ

0)) = ci (fi (h0i (q
0
i, τ

0)))

Since the two problems are ordinally equivalent, hi (qi,R+) = fi
³
hfi

³
qfi ,R+

´´
, i.e. hi (qi, τ)

and fi (h0i (q
0
i, τ

0)) are both on the path hi (qi,R+). Since ci (hi (qi, · )) is an increasing func-
tion, ci (hi (qi, τ)) = ci (fi (h0i (q

0
i, τ

0))) implies hi (qi, τ) = fi (h0i (q
0
i, τ

0)) . Using the latter with
c−1iqi (xi) = hi (y, τ) , and c

0−1
iqi
(xi) = h

0
i (q

0
i, τ

0) , we get:

cH
0

Q0 (x) = C 0
³
c0−11q01 (x1) , . . . , c

0−1
nq0n
(xn)

´
= C

³
f
³
c0−11q01 (x1) , . . . , c

0−1
nq0n
(xn)

´´
= C

¡
c−11q1(x1) , . . . , c

−1
nqn(xn)

¢
= cHQ (x)
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8.3 Proof of Theorem 5

Let ξ satisfies (ETE) and (SP) and consider two homogeneous problems (Q,C,H) and³
Q̃, C,H

´
∈ Rnk+ × C (nk)×H (C) such that:

q1 = q̃1 ≤ q̃j, j = 2, . . . , n (8)

qj ≤ q̃j, j = 2, . . . , n (9)

ξi (Q,C,H) ≤ ξj (Q,C,H) ∀i < j (10)

Note that (10) implies:

ξ1 (Q,C,H) ≤
C (Q)

n
(11)

Next, consider the following profile of demands Q1 = (q1, . . . , q1) . By (ETE):

ξ1
¡
Q1, C,H

¢
=
C (Q1)

n
(12)

By (SP), (8) and (10) imply:

ξ1

³
Q̃, C,H

´
= ξ1

¡
Q1, C,H

¢
(13)

Similarly, (9) and (10) imply:

ξ1

³
Q̃, C,H

´
= ξ1 (Q,C,H) (14)

Note that the form of H does not matter in the above. Combining (11-14), we get:

C (Q) ≥ C ¡Q1¢ (15)

This last inequality is not satisfied for all cost functions. Consider for example the two

profiles:

Q = ((2, 1) , (1, 2)) Q̃ = ((2, 1) , (2, 3))

We have:

Q1 = ((2, 1) , (2, 1))

Inequality (15) is violated for example with the following class of homogeneous cost functions

defined by

C (Y ) = g
¡
(y11 + y21)

3 + (y12 + y22)
3¢

where g : R+ → R+, g0 (·) > 0, and otherwise arbitrary.
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8.4 Proof of Theorem 6

Consider two problems (Q,C,H) and (Q0, C,H) ∈ Rm+×C (m)×H (C) such that C is an IIC
cost function and such that qk ∈ hk (q0k,R+) , q0k ≥ qk and q0j = qj ∀j 6= k.We shall show that
ξPSi (Q,C,H) ≤ ξPSi (Q0, C,H) ∀i ∈ N.We first suppose that c1 (q1) ≤ c2 (q2) ≤ . . . ≤ cn (qn)
and c1 (q01) ≤ c2 (q02) ≤ . . . ≤ cn (q0n) . We must distinguish four cases:

• i < k : In this case, ξPSi (Q0, C,H) = ξPSi (Q,C,H) by (PSP).

• i = k : In this case, ξPSi (Q0, C,H) ≥ ξPSi (Q,C,H) since C (Q0i) ≥ C (Qi) , C (Q0i−1) =
C (Qi−1) , and ξPSj (Q0, C,H) = ξPSj (Q,C,H) ∀j < k. This, together with the comple-
ment given below for the case where the ranks of the agents are changed when going

from Q to Q0, establishes (PM).

• i = k + 1 : Note that

ξPSk+1 (Q,C,H) =
k−1X
j=1

ξPSj (Q,C,H) +
C
¡
Qk
¢− C ¡Qk−1¢
n− k + 1 +

C
¡
Qk+1

¢− C ¡Qk¢
n− k

By (PSP), we know that ξPSj (Q0, C,H) = ξPSj (Q,C,H) ∀j < k. We shall show that

C
¡
Qk
¢− C ¡Qk−1¢
n− k + 1 +

C
¡
Qk+1

¢− C ¡Qk¢
n− k

≤ C
¡
Q0k
¢− C ¡Q0k−1¢
n− k + 1 +

C
¡
Q0k+1

¢− C ¡Q0k¢
n− k , (16)

which is equivalent to:

C
¡
Q0k
¢− C ¡Qk¢ ≤ (n− k + 1) ¡C ¡Q0k+1¢− C ¡Qk+1¢¢

This is a necessary condition for ξPSk+1 (Q,C,H) ≤ ξPSk+1 (Q
0, C,H) to hold.

Let Y = Qk, Y 0 = Qk+1, Z = Q0k − Qk = ¡0, . . . , 0, q0kk − qkk , . . . , q0kn − qkn¢ and note
that Q0k+1 − Qk+1 = Z{k}. By definition, we have cj

¡
q0kj
¢
= ck (q

0
k) and cj (yj) =

cj
¡
qkj
¢
= ck (qk) = ck (yk) ∀j ≥ k, from which cj

¡
q0kj
¢− cj ¡qkj ¢ = ck (q0k)− ck (qk) , i.e.

cj (yj + zj) − cj (yj) = ck (yk + zk) − ck (yk) ∀i, j ≥ k. Also note that Y + Z = Q0k ≤
Q0k+1 = Y 0 + Z{k}. Thus, (16) follows from Lemma 1.2 and more precisely from (4)

with the reversed inequality.

• i > k + 1 : In this case, Q0i − Qi = Q0i−1 − Qi−1, with q0k − qk as the only positive
component and Qi−1 ≤ Qi. Thus, C (Q0i−1)−C (Qi−1) ≤ C (Q0i)−C (Qi) by (IIC) or
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Lemma 1.1, from which C (Qi)− C (Qi−1) ≤ C (Q0i)− C (Q0i−1). Combining this last
inequality with ξPSj (Q,C,H) ≤ ξPSj (Q0, C,H) ∀j < i yields the result.
Next, suppose that the order of the stand-alone costs is changed when going from

Q to Q0. More precisely, suppose that ck+p
¡
q0k+p

¢
< ck (q

0
k) for some p ≤ n − k and

ck (q
0
k) ≤ ck+p+1

¡
q0k+p+1

¢
whenever k + p + 1 ≤ n. Then, consider a sequence Q =

Q̂0, Q̂1, . . . , Q̂p = Q0, where q̂`j = qj ∀j 6= k and where q̂`k is chosen so that qk ∈
hk
¡
q̂`k,R+

¢
and ck

¡
q̂`k
¢
= ck+` (qk+`) , ` = 1, . . . , p− 1. In other words, Q̂1 is obtained

by increasing qk to get a q̂1k such that qk ∈ hk (q̂1k,R+) and c (q̂1k) = ck+1 (qk+1) . Q̂
2

is obtained by further increasing qk until its stand-alone cost reaches ck+2 (qk+2) and

so on until Q̂p. Note that the ranks k and k + ` may be interchanged in each of the

problems
³
Q̂`, C,H

´
, ` = 1, . . . , p, without changing the cost shares for each problem

under ξPS. Therefore, ξPSi is non-decreasing along this sequence of problems and thus:

ξPSi (Q,C,H) ≤ ξPSi

³
Q̂1, C,H

´
≤ ξPSi

³
Q̂p, C,H

´
= ξPSi (Q0, C,H)

8.5 Proof of Corollary 7

Consider a sequence Q = Q̂0, Q̂1, . . . , Q̂n = Q0, where:

q̂ij =

(
q0j if j ≤ i
qj if j > i

In plain word, each component is increased, if needed, one at a time along this sequence until

Q0 is reached. Then, by Theorem 6, ξPSi is non-decreasing along the sequence of problems³
Q̂i, C,H

´
, i = 1, . . . , n, and thus:

ξPSi (Q,C,H) ≤ ξPSi

³
Q̂1, C,H

´
≤ · · · ≤ ξPSi

³
Q̂n, C,H

´
= ξPSi (Q0, C,H)

8.6 Proof of Theorem 8

We proceed by induction. With Y = 0 and Y 0 = Q1 in (5), we get C (Q1) ≤ n c1 (q1) , from
which:

ξ1 (Q,C,H) =
C (Q1)

n
≤ c1 (q1)
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Next, suppose that ξi−1 ≤ ci−1 (qi−1) is true and note that:
nX
j=1

cj
¡
qij
¢
=

i−1X
j=1

cj (qj) + (n− i+ 1) ci (qi)

nX
j=1

cj
¡
qi−1j

¢
=

i−1X
j=1

cj (qj) + (n− i+ 1) ci−1 (qi−1)

Then, (5) of Lemma 1.3 implies:

C
¡
Qi
¢− C ¡Qi−1¢ ≤ (n− i+ 1) [ci (qi)− ci−1 (qi−1)]

Collecting all the above yields:

ξi (Q,C,H) = ξi−1 (Q,C,H) +
C (Qi)− C (Qi−1)

n− i+ 1
≤ ci−1 (qi−1) +

C (Qi)− C (Qi−1)
n− i+ 1

≤ ci (qi)

8.7 Proof of Theorem 9

Consider a problem (Q,C,H) ∈ Rm+ × C (m) × H (C) and any proper subset S ⊂ N. Let
Q̃ be the profile of demands obtained by substituting hj (qj, 0) to qj in Q for all j /∈ S. By
definition of H (C) , we have cj (hj (qj, 0)) = 0. By (INA), we thus have ξi

³
Q̃, C,H

´
= 0

∀i /∈ S, from whichX
i∈S

ξi

³
Q̃, C,H

´
=
X
i∈N

ξi

³
Q̃, C,H

´
= C

³
Q̃
´
= C

¡
QS
¢

where the last equality follows from the definition of C (m) . By (NPCM) and the fact that
QS ≤ Q̃, we also have:X

i∈S
ξi (Q,C,H) ≤

X
i∈S

ξi

³
Q̃, C,H

´
= C

¡
QS
¢

We thus conclude that ξ (Q,C,H) ∈ Co (Q,C,H) .

8.8 Proof of Theorem 15

Suppose that C is of the form C (Y ) =
X
i∈N

ci (yi) and let the agents be ordered by their

stand alone costs, i.e. c1 (q1) ≤ . . . ≤ cn (qn) . We shall proceed by induction. It is easy to
check that ξPS1 (Q,C,H) = c1 (q1) . Next, suppose that for agent i− 1, we have:

ξPSi−1 (Q,C,H) = ci−1 (qi−1) (17)
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By definition, we know that:

ξPSi (Q,C,H) = ξPSi−1 (Q,C,H) +
C (Qi)− C (Qi−1)

n− i+ 1 (18)

By assumption and construction,

C
¡
Qi
¢
=

i−1X
j=1

cj (qj) + (n− i+ 1) ci (qi) (19)

C
¡
Qi−1

¢
=

i−1X
j=1

cj (qj) + (n− i+ 1) ci−1 (qi−1) (20)

Combining (17-20), we get:

ξPSi (Q,C,H) = ci (qi)

Since this is true for any i ∈ N, ξPS satisfies (SC).

8.9 Proof of Theorem 17

As pointed out in Remarks 7 and 8, ξPS satisfies (ETV) and (PSP). Turning to the con-

verse, let ξ a be cost sharing rule that satisfies (ETV) and (PSP) and given a prob-

lem (Q,C,H) ∈ Rm+ × C (m) × H (C) consider the sequence of cost sharing problems
(Q1, C,H) , (Q2, C,H) , . . . , (Qn, C,H) where the Qi are the intermediate demands of Defi-

nition 3. By (ETV), we have:

ξi
¡
Q1, C,H

¢
=
C (Q1)

n
∀i ∈ N

By (PSP), we have:

ξ1 (Q,C,H) = ξ
¡
Q1, C,H

¢
By (ETV), we have:

ξi
¡
Q2, C,H

¢
=

2X
j=1

C (Qj)− C (Qj−1)
n+ 1− j ∀i ∈ N\ {1}

By (PSP), we have:

ξ2 (Q,C,H) = ξ
¡
Q2, C,H

¢
and so on. Thus, ξ (Q,C,H) = ξPS (Q,C,H) .
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8.10 Proof of Theorem 18

(S): Recall that agents are ordered according to the ĉi (qi) . Let C be symmetric and qi = qj
with i < j. Then, {i, j} ⊂ N1 or {i, j} ⊂ N2 and thus, ĉi (qi) = ĉk (qk) ∀k : i ≤ k ≤ j. This
implies Q̂i = Q̂k ∀k : i ≤ k ≤ j. Thus ξTi (Q,C,H) = ξTj (Q,C,H) as requested by (S).

(INA): Suppose that we remove an agent k such that ck (qk) = 0 from a cost sharing

problem. If k > 1, we have ξTi (Q,C,H) = 0 ∀i ≤ k. Removing k from the problem does

not change the contribution of agents i < k. For agents i > k, this amounts to removing the

term of index k and replacing the term of index k + 1 by
C
³
Q̂k+1

´
− C

³
Q̂k−1

´
n− k in:

ξTi (Q,C,H) =
iX
j=1

C
³
Q̂j
´
− C

³
Q̂j−1

´
n+ 1− j , i = k + 1, . . . , n

Since Q̂k = Q̂k−1, this leaves the contributions of these agents intact as requested by (INA).
(RIIA): Consider two cost sharing problems (Q,C,H) and (Q0, C,H 0) ∈ Rm+×C (m)×H (C)
such that qi = q0i and qj = q0j for some i, j ∈ N. If ξTi (Q,C,H) ≤ ξTj (Q,C,H) , then

C
³
Q̂i
´
≤ C

³
Q̂j
´
, which in turns means that ĉi (qi) ≤ ĉj (qj) . Thus, ĉi (q0i) ≤ ĉj

¡
q0j
¢
, which

implies C
³
Q̂0i
´
≤ C

³
Q̂0j
´
and ξTi (Q

0, C,H 0) ≤ ξTj (Q
0, C,H 0) . The converse is also true, i.e.

ξTi (Q
0, C,H 0) ≤ ξTj (Q

0, C,H 0) implies ξTi (Q,C,H) ≤ ξTj (Q,C,H) . Hence, ξ
T
i (Q,C,H) ≤

ξTj (Q,C,H)⇔ ξTi (Q
0, C,H 0) ≤ ξTj (Q

0, C,H 0) as requested by (RIIA).
(PSP): Consider two cost sharing problems (Q,C,H) and (Q0, C,H) ∈ Rm+×C (m)×H (C),
and a i ∈ N such that q0i = qi and

q0j = qj ∀j ∈ N\ {i} : ξj (Q,C,H) < ξi (Q,C,H)

qj ∈ hj
¡
q0j,R+

¢
and q0j ≥ qj ∀j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H)

Since q0j and qj are on the same path for j ∈ N\ {i} : ξi (Q,C,H) ≤ ξj (Q,C,H) , we clearly

have Q̂j = Q̂0j for j = i and j ∈ N\ {i} : ξTj (Q,C,H) < ξTi (Q,C,H) . Thus, for those j, we

have ξTj (Q
0, C,H) = ξTj (Q,C,H) as requested by (PSP).

(O): Consider two ordinally equivalent problems (Q,C,H) ∈ Rm+ × C (m) × H (C) and¡
Qf , Cf , Hf

¢ ∈ Rm+×C (m)×H ¡Cf¢ with f : Rm+ → Rm+ as the ordinal transformation. Thus,
we have Q = f

¡
Qf
¢
, hi (qi,R+) = fi

³
hf
³
qfi ,R+

´´
∀i, and Cf (Y ) = C (f (Y )) ∀y ∈ Rm+ .

The latter implies

cfi (y) = ci (fi (y)) ∀y ∈ Rmi
+ ∀i ∈ N
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and:

cfi

³
qfi

´
= ci (qi) ∀i ∈ N

This means that the transformation f leaves the order of agents unchanged. Next, we show

that Qi = f
¡
Qfi
¢ ∀i ∈ N. Given i, j ∈ N, let τ and τ f be two real numbers such that

cj (hj (qj, τ)) = ci (qi) and c
f
j

³
hfj

³
qfj , τ

f
´´
= cfi

³
qfi

´
. By definition:

cj (hj (qj, τ)) = ci (qi) = c
f
i

³
qfi

´
= cfj

³
hfj

³
qfj , τ

f
´´
= cj

³
fj

³
hfj

³
qfj , τ

f
´´´

By definition, hj (qj,R+) = fj
³
hfj

³
qfj ,R+

´´
. Thus, hj (qj, τ) and fj

³
hfj

³
qfj , τ

f
´´
are both

on the path hj (qj,R+). Since cj (hj (qj, · )) is increasing, cj (hj (qj, τ)) = cj
³
fj

³
hfj

³
qfj , τ

f
´´´

implies hj (qj, τ) = fj
³
hfj

³
qfj , τ

f
´´
. Thus, Qi = f

¡
Qfi
¢
, which implies Cf

¡
Qfi
¢
= C (Qi)

and ξPS
¡
Qf , Cf , H

¢
= ξPS

¡
Q,C,Hf

¢
as requested by (O).
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