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ABSTRACT

In this paper, we applied the generalized mixed estimation approach to the problem of estimating the
Quebec residential electricity demand for space and water heating. A multinomial discrete-continuous
choice model is used and estimated in two stages. The discrete choice is modelled as a multinomial probit
model, while the continuous choice is estimated from a reduced form approach which corrects for the
simultaneity biases. The results indicate that the GM estimator which combines prior and sample information
dominates the classical ML estimator of the MNP models  and hence, provides better prevision for
electricity consumption. Evidence also shows that  heating-system capital and operating costs, households
characteristics, and energy prices have a significant impact on the choice of heating systems and electricity
use. In particular, price substitution effects are well predicted.

Keywords: Generalized mixed estimator, residential electricity demand, multinomial probit, discrete-
continuous choice.
JEL classification: C, C13; C51; D12; Q41 
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1. INTRODUCTION

Traditionally, studies on residential electricity demand have been concentrated on electricity consumption

without considering the relationship between heating system and  electricity use. The work by Dubin and

Mcfadden (1984) is the pioneering study that has addressed this issue. The authors have suggested a two-

steps continuous-discrete model that links the choice of heating technology (the discrete choice) and

electricity consumption (the continuous decision). Their findings attracted more other researchers in this field

[Dagsvik and al (1987), Dennerlein (1987), and Branch (1993), amongst others]. Bernard, Bolduc and

Bélanger (BBB, 1996) applied this two-steps approach to estimate the residential electricity demand in

Quebec, using data from the 1989 Hydro-Quebec survey. They modelled the discrete choice part of the

framework as a Multinomial Probit (MNP) with first-order autoregressive (AR(1)) error term to capture

the correlation between heating system   choices. In turn, Nesbakken (2001) estimated the total energy

consumption from Norwegian micro-data of 1990, using a full information maximum likelihood (FIML)

approach which estimates the discrete and continuous parts of the model simultaneously. The discrete part

of the model was formulated as a conditional logit model that assumes independence between heating

equipment choices. However, as BBB suggested, the FMIL is computationally unfeasible under a structure

where the choices are mutually dependent. Moreover, Nesbakken (2001) underscored that only one of

the most important parameters of the model was found as significantly different when the model was

estimated by the two-steps procedure. Thus, this single problem can be eliminated by using a more efficient

estimation technique for the discrete choice part of the model like the MNP model with AR(1) error

process which was used in the BBB paper. Indeed, the findings by BBB indicated  that the MNP with an

interdependent structure of choices was a better framework for estimating their Dataset than both the

Multinomial Logit (MNL) and Nested Multinomial Logit (NMNL). The MNP has markedly improved the

log-likelihood function, while the likelihood ratio test for comparing the MNP model to the MNL one

clearly rejected the MNL.

The purpose of this paper is to extend the BBB discrete-continuous choice model by estimating

the discrete choice part of this framework from the generalized mixed estimation (GME) approach

suggested by Kalulumia and Bolduc (1997),  in nonlinear situations. This empirical Bayesian approach

combines the sample information and a prior density function derived from a previous knowledge on model

parameters. Kalulumia and Bolduc have studied the statistical properties of the generalized mixed estimator.

They have showed that it is more efficient than the sample mean, or the conventional maximum likelihood

(ML) technique. As in BBB, the discrete choice of space and water heating systems is modelled as a MNP
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1In order to deal with important changes in heating energy cost due to large shifts in the weather, some
consumers in the Quebec province use dual energy sources: oil/electricity or wood/electricity. According
to1991-1992 dual-energy tariffs, electricity is used for all purposes when the weather is above -15ºC at
3.2 ¢/kWh. If the weather decreases below -15ºC, another source (wood or oil) is used for heating

with AR(1) error structure which contains the conditional logit model, as a special case. While this is the

first time the GME approach is utilized in a multinomial discrete choice framework, our anticipation is that

it will improve over the previous estimation results by BBB and provide therefore, better prevision for

electricity demand, as well as for price and income elasticities.  The empirical application confirms our

expectation as the GME results dominate those obtained from the classical ML estimation of the discrete-

continuous choice model.

The second section of the paper deals with the definition of the economic and statistical  models,

while the empirical results are discussed in the third section. The paper ends with the concluding remark.

2. THE DISCRETE-CONTINUOUS CHOICE MODEL

2.1 The Economic Framework

For the sake of comparison between the sample mean and the GME, we use in this study the same

model specification as in the paper by BBB. In general, when we deal with a discrete-continuous model

for residential electricity demand, the discrete choice refers to the selection of the energy-using equipment

and the continuous decision refers to the optimal quantity of electricity consumption restricted by the

investment decision in the discrete choice model. For economic consistency between both choices (discrete

and continuous), electricity demand is derived from the Roy’s identity applied to the conditional indirect

utility function providing the level of satisfaction related to each heating equipment. More specifically, BBB

use the following indirect utility specification conditional on heating equipment j:

 (2.1)Vjn'Vjn(pe,pg,po,y&rj,zj,zn), j'1,...,Jn.

Here,  denotes the unobserved utility associated with the space-water heating system j for individualVjn

n,  is the price of electricity,  the price of natural gas,  the price of fuel oil,  is the income netpe pg po y&rj

of annualized cost of purchasing and operating heating system j,  is a vector of attributes for heatingzj

technology j, and  is a vector of socio-economic variables for household n. The household chooseszn

among the following (nine) space and water heating systems: gas and gas, gas and electricity, dual energy1
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purpose and the price of electricity jumps to 11.7 ¢/kWh. The marginal price of electricity for a regular
residential client is 5.2¢/kWh.

and oil, dual energy and electricity, oil and oil, oil and electricity, electricity and electricity, wood and

electricity, wood-electricity and electricity (wood and electricity for space, and electricity for water).

The electricity demand conditional on the chosen heating system j, is determined by Roy’s identity

as follows:

(2.2)Xjn'&
dVj /dpe

dVj /dy
, J'1,...,Jn

which may be written in a following functional form:

(2.3)Xjn'gjn(pe,pg,po,y&rj,dj,sn), j'1,...,Jn.

For computation simplicity, Equations (2.1) and (3.4) are assumed to be linear in all arguments.  Ideally,

the defined discrete-continuous model is supposed to be estimated by a FIML technique where the

probability of the joint event  is maximized. The corresponding joint density function can be(j, Xjn)

computed as  which is the product of conditional and marginal density function. As statedP(j,Xjn).h(Xjn),

in the introduction, this procedure is computationally unfeasible when indirect utilities are correlated, as well

as the joint error structure. Hence, Dubin and Mcfadden (1984) and BBB (1996) ignore the structural

relationships relating parameters appearing in , the discrete choice, and those involving in P(j,Xjn) h(Xjn),

the continuous choice. This assumption allows for a separate estimation of the two parts of the discrete-

continuous model using a two-stage procedure. The household chooses first his costless space-water

heating system j, and then given j, he chooses the optimal quantity of electricity consumption  Thus,Xjn.

its total electricity demand is computed as a weighted average of  by the choice probability Xjn P(j*Xjn)

over all heating options :

(2.4)Xn ' 'Jn
j'1 Xjn P(j*Xjn)

In addition to the above sample information, the GME approach developed by Kalulumia and

Bolduc (1997), supposes that prior knowledge on coefficients in the utility function (2.1) are available and

modelled as set of linear stochastic restrictions. In the current application, the prior information on the
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discrete-choice model coefficients is obtained from a previous estimation of the same model, using data

from the 1984 Hydro-Quebec survey. This information provides a prior density function  which will bep

jointly estimated from the GME technique. Let us now describe in our econometric model.

2.2 The Econometric Model 

It is well known that the estimation of MNP models is computationally very demanding when the

set of choices involved is large. In particular, if there are more than four available alternatives, the evaluation

of the multiple integrals that represent the choice probabilities cannot be carried out from existing numerical

integration methods. In that case, modelers who want to rely on the maximum likelihood (ML) based

approach require simulation methods to calculate the response probabilities. Number of choice probability

simulators have been suggested in the literature (see Hajivassiliou,1993). Those exhibiting the best

properties are the Stern (1992), the Geweke, Hajivassiliou and Keane (GHK), and the MNL kernel

(McFadden, 1989) choice probability simulators. In terms of computation time, the MNL kernel simulator

comes first, followed by the Stern one. However, in the Monte Carlo experiments performed by

Hajivassiliou (1993) the GHK simulator obtained the best overall performance, closely followed by the

Stern’s one. In order to simplify the estimation of MNP models, Ben-Akiva and Bolduc (1991) and Bolduc

(1992) extended the McFadden (1989) method by suggesting an hybrid MNP formulation that contains

the MNL model as a special case. In this approach, model parameters are estimated using the method of

maximum simulated likelihood (MSL), where the choice probabilities are replaced with smooth MNL

kernel simulators. In their empirical application, Bolduc, Fortin and Gordon (1996) showed that the

performance of the latter simulator compares well to the Geweke, Hajivassiliou and Keane simulation

method.

Let us now describe this hybrid MNP model with AR(1) error process in the GME framework

suggested by Kalulumia and Bolduc (1997).  For a household n,  and an alternative  j, n'1,...,N j'1,...,Jn

where  is the number of heating systems in the choice set  this model can be formulated asJn C'[1,...,Jn],

yin'
1 if Vin $ Vjn for j'1,...,Jn

0 otherwise, and

(3.1)Vin'Zinß % gin' Zinß%s i?%vin,

where  denotes the observed choice,  is the conditional indirect utility of heating system i asyin Vin

perceived by household n,  is a  vector of characteristics of both household n and heatingZin (1×m)
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technology i,  is a  vector of unknown parameters, and  is a random disturbance which isß (m×1) gin

introduced to account for factors such as unobserved heterogeneity and measurement errors. The  random

disturbance  is modelled as a mixture of a normally distributed error  and an i.i.d. Gumbel disturbancegin ?in

 where  denotes the standard deviation specific to each alternative. In vector form, the model canvin, s i

be written as:

(3.2)Vn ' Znß % gn ' T?n % vn.

Here, T is a -diagonal matrix which contains the standard deviation  on the diagonal.  and  are Jn s i Vn gn (Jn×1)

vectors and  is a  matrix.  It is also assumed that heating system choices are correlated due toZn (Jn×m)

the similarity of energy type used in different heating choices (e.g. oil/oil and oil/electricity or

electricity/electricity). The simple way to include such a correlated structure in the model is to assume that

the disturbance term  follows a generalized AR(1) process:  or  where?in ?n'?W?%? ?'(IJn
&?W)&1?,

 The scalar  is the correlation coefficient  and W is a  contiguity matrix that?-N(0,IJn
). ? (&1<?<1) (Jn×Jn)

relates the alternatives. The weights  in W are the parsimonious parametric function describing the effectwij

of each error on the others (for more details see Bolduc, 1992).  Under the defined AR(1) error-structure,

the MNP model (3.2) is written as:

(3.3)Vn ' Znß % T P &1?n % v n,

where  According to the rank conditions, it is well known that one can only estimate a scaledP'IJn
&?W.

version of model (3.3) expressed in terms of utility differences with respect to the utility of a given

alternative. The required scaling is obtained by setting to one, the variance of the first error term in the

differenced model. Another way to deal with the rank conditions in the original model (3.3) is to set s j'0

and  for the reference alternative j (say the first one,  j=1). We use the latter scaling approach in ourwji'0

application, where the reference alternative is electricity/electricity heating system. Hence, onlyJ'Jn&1

utility functions are estimated, where  The joint vector  to be computed includes the followingj'2,..,Jn. d

vectors:   and the scalar ß'(ß1,..,ßm)), s'(s 2,...,s Jn
)), ?.

The model (3.3) conditional on  defines a standard MNL model. Thus, the conditional?n

probability of choosing heating system i by household n is expressed as

(3.4)? (i*?n)'Pr(Vin $ max
új0C jÖi

Vjn)'
exp(zinß%Mi?n)

'
j0C

exp(Zjnß%Mj?n)
,

where  denotes the row i of matrix  in model (3.3). The unconditional probability of choosingMi M'T P &1

alternative i by individual n is then given by:
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(3.5)P i i n I dn

J

n J( ) ... ( | ) ( , ) ,=
− ∞

+ ∞

− ∞

+ ∞

∫∫
123

Λ ζ ζ ζ

which is approximated in the MSL method by the following MNL kernel simulator:

(3.6)Sn(i)' 1
H
'H

h'1
? (i*?nh),

where H is the number of draws. The likelihood function associated with the defined MNP model is then

(3.7)f(d)' (N
n'1

(
i0C

Pn(i)
yin.

The MSL estimator  of the K-dimensional vector  is obtained by maximizing the log-likelihoodd̃'(ß̃),s̃ ),?)) d

 where the choice probabilities (3.5) are replaced by simulators in (3.6). If the vector  and ,lnf(d) s'0 ?'0

the MNP model defined here reduces to a pure MNL framework which is also considered in this paper.

Suppose now that in addition to the above sample information, prior information about  is alsoß

available.  It is assumed to arise from an unbiased estimator  of the  parameterr'ß(%? , ?-N(0,O), m×1

vector  of the statistical model in (3.1) based on a previous sample, where  is the sampling error, ß( ? O

is an  p.d. matrix and where the true value of  may be different from that of  in the current sample.m×m ß( ß

If , then one can find a scale parameter  such that each element  of  equals the correspondingßÖß( µl ßl ß

element  of  times , i.e.  l=1,...,m.  This is equivalently written in vector notation as:ß(
l ß( µl ßl'µlß

(
l ,

 where  is an  diagonal matrix denoted by  and ß('R(µ)ß, R(µ) m×m R(µ)'diag(1/µl,...,1/µm) µ'(µ1,...,µm))

is a vector of  unknown scale parameters.  The difference between the true values of parameter vectors is

given by: which is a measure of prior information bias. After substituting inß(&ß'R(̄µ)ß&ß'[R(µ̄)&I]ß,

, the sample value  of , one obtains the following set of prior stochastic restrictions:ß('R(µ)ß ß('r&? ß(

, (3.8)r ' R(µ)ß % ?, ?-N(0,O )

where the rank of the unknown  design matrix is p . The likelihood function associated with thisR(µ) (p#m)

prior information model is then

(3.9) p(ß,µ*r)'(2p)&m /2*O*&1/2exp6(&1/2)[r&R(µ)])O&1[r&R(µ)]>.
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2.3  The Model Estimation
The GME approach suggested by Kalulumia and Bolduc (1997) estimate the joint model combining

the sample information in (3.7) and the prior knowledge in (3.9), using the ML technique. Assuming that en

and  are mutually independent, the joint likelihood function combining both prior and sample informationvn

is given by  Therefore, the GM estimator  which is considered in this study,l((d,µ)'f(d).p(ß,µ). ?̂'(d̂),µ̂)))

is obtained by maximizing over , the following log-likelihood function: ?'(d),µ)))

(3.10)L(?)%'N
i'1

'
i0C

yin lnPn(i) & (1/2)[r&R(µ)ß])O&1[r&R(µ)ß],

where the constant terms are dropped.  The first order conditions for this  ML problem are given by

(3.11)ML(?)/Md' 'N
n'1

'
i0C

Zin [yin&P(i*C)] % Mlnp(ß,µ)
Md

,

where  andMlnp(ß,µ)/Md ' [(R(µ))O&1?)) 0)])

(3.12)ML(?)/Mµ'& Mvec(R(µ)))

Mµ
(Im¼ß)O&1?.

Accordingly, the simulated log-likelihood is given by 

(3.13)L̂(?)%'N
i'1

'
i0C

yin lnSn(i)& (1/2)[r&R(µ)])O&1[r&R(µ)],

and the simulated form of the first-order condition (3.11) is

(3.14)ML̂(?)/Md' 'N
n'1

'
i0C

1
Sn(i)

. 1
H
'H

h'1
? (i*?nh)

Mln? (i*?nh)

Md
[yin & Sn(i)] % Mlnp(ß,µ)

Md
.

Kalulumia and Bolduc showed that the GME derived from the maximization of (3.10) will have a

justification if the prior and sample information are not in conflict with each other.  Moreover, as it can be

expected from the previous formulation of the prior information in (3.8), the estimation of each individual

scale coefficient ,  does not bring any additional information to the conventional ML estimator µl l'1,...,m, d̃

of  which ignores the prior judgement. The GME is of interest only if the number of scale parameters tod

be estimated can be reduced to  by constraining some of those scale coefficients to be equal. Overall,p<m

Kalulumia and Bolduc suggested a likelihood-ratio (LR) based test for assessing the compatibility between

prior and sample information. The null hypothesis of compatibility is defined as  and tested againstH0:µ0úp
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2Data on gas consumption was provided by Gas Metropolitain while those on energy prices which enter
into the operating costs of heating technologies come from the Quebec Government (see BBB for more
details).

the alternative . This LR test is given by where L(U) and L(C) are theH1:µ0úm ?'&2[L(U)&L(C)]-?2
m&p,

maximum log-likelihood values for the unconstrained (classical MLE) and constrained model (GME),

respectively. The constrained log-likelihood is equivalent to where  is the MLEL(U)'lnf(d̃)&(m/2)ln(2p), d̃

of  Under , the prior and sample information are in agreement and hence, the GME results cannot bed. H0

rejected and will dominate the classical ML estimation. Therefore, the GME  is obtained by?̂'(ß̂),µ̂))

maximizing the log-likelihood function (3.10), subject to   µ0úp.

As to the continuous part of the discrete-choice model, we use the specification suggested by BBB.

The only exception is that, we only use the reduced form (RF) approach to estimate the electricity demand

for space and water heating system. This approach includes the MNP choice probabilities estimated in the

first stage, as variables in the electricity demand regression.

3. EMPIRICAL RESULTS

In this section, we are now applying the generalized mixed (GM) estimator for our defined MNP

model to the problem of estimating the electricity demand for space and water heating purpose from the

discrete-continuous framework. The performance of the GME method is compared to that of the MLE

which ignores stochastic prior information, using both the asymptotic MSE criteria and the comparison of

individual asymptotic standard errors (SE).

3.1 Data description

The data set involved in the empirical application was obtained from the five-year postal survey by

Hydro-Quebec in 1989, as well as from both Gas Metropolain and Quebec Government databases2. It

consists of a sample of 3090 households drawn from a large data set of 45,833 respondents to whom a

questionnaire was mailed. The sample was selected to include only single family houses (detached, semi-

detached or raw with separate outdoor entrance) that were built (68%) or converted to another space

heating energy source (32%) during the 1986-1989 period of stable energy prices. A stable price period

is considered to give an even chance for each heating options to be chosen. Information on each

questionnaire includes the type of heating system selected, the stock of electric appliances, the house
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characteristics, the stock of electric appliances, the annual electricity consumption in Kwh, and a limited set

of socio-economic indicators. Nine space and water heating systems were chosen. Out of the 3090

households, 80% rely on electricity for heating space while 96% use it for water heating purpose. Dual-

energy space-heating users are mostly electric (7%) than oil one (2.4%). Oil (2.9%) is mostly used for water

heating while natural gas (1.5%) is mainly a space heating energy-source. The gas distribution network is

available only in urban areas. It is motly dominated by industrial users.

The variables included in the discrete-continuous model can be summarized into eleven distinct

groups. A detailed definition of each group of variables follows: SET = the population density in different

regions; HDD = the heating degree-days; DATCONV = the year of heating equipment conversion (1986-

1989); DATCON = the house construction year (1920-1989); NBPERS = the number of persons per

household; SURF = house size (square feet); AGE = age of the household head; Y =  the household income

($); PIOP = annual operating cost of heating system ($); PICP = annual fixed cost of heating system ($);

and PICPY = a variable capturing the interaction effect between income and annual fixed cost (annual fixed

cost x income ($)). As prior information, we use the estimation results of a similar model based on a sample

of 5010 households collected in the same way and from the same population, during the 1984 Hydro-

Quebec survey.  The available results are coefficient estimates and their associated variance-covariance

matrix.  In order to save space, Table 1 presents only the ML estimates and their respective SE for  the

MNP and MNL models. Below, we are now discussing the results of the two-stage estimation of the

discrete-continuous model for electricity demand for heating ends.

3.2 Discrete Choice of Heating System

As earlier indicated, we use the same model specification as in BBB, where the Matrix W is defined

to capture the correlation between the choice and use of oil and electricity for both space and water heating,

as well as the relationship between the two system using wood for space heating. The only exception is that

we estimate three different standard deviations  instead of one in BBB.(s )

Table 3 summarizes the results for both the GME and the classical MLE of the MNL and MNP

models. The variable included in both models are given in the first column. As earlier indicated, the 7th option

(electricity/electricity) is chosen as the reference choice. This explains why the coefficients to its utility

function do not appear. The parameters in the differenced utility equations are interpreted as the impact of

explanatory variables on the probabilities of choosing heating systems relative to the reference choice of

electric heaters only. Note also that in this model, it is possible to estimate the effects of a variable on each

alternative. Hence, in the naming notation adopted here, a variable name index i indicates a specific effect
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on alternative i, while a double index ij suggests an effect identical for alternatives i and j. As shown in

column 2, out of 47 scale coefficients only p=19 groups of  are estimated. This means that 28 (m-p=47-µ

19) equality restrictions are imposed on the ’ s for the MNL and 32 such constrains (K-p=51-19) for theµl

MNP model. The MNL and GM MNL estimates are given in columns 3 and 5, respectively, while those

for the MNP and GM MNP are presented in columns 7 and 9. The LR tests for assessing wether the prior

information is in accordance with the sample evidence are as follows. For the GME of MNL (GMEMNL), ?'7.41

which compared to the 5% critical value  clearly  indicates non-rejection of the GM?2
(28,5%)'41.34

specification suggested in this application. For the GME of MNP (GMEMNP), ?'39.23<?2
(32,5%)'46.19

which indicates that we cannot reject the null hypothesis of compatibility and hence, the GM estimation

results obtained from this MNP model are accepted.

Looking at the estimator statistical performance, the figures in the last three rows clearly indicate that

the GM estimator dominates the classical ML one with respect to both the SE of individual coefficients and

the MSE criterion (trace of the var-covariance matrix). In fact, for the MNL model almost all the figures in

column 6 (GME) are smaller than those appearing in column 4 (MLE) and

 The t-tests related to the GME of the MNL model show that  mosttrVar(d̂)'20.73<trVar(d̃)'45.71.

coefficients are significant at 5% and affect the probabilities of choosing heating systems. The variable

DATCONV3 which was not significant in the pure MNL model becomes significant in the GME

framework. The results for the MNP model with 50 draws show similar features. First of all, as indicated

in the last panels of Table 2, the GME of the MNP dominates all the MSL results in the sense of both the

MSE et the SE of individual parameters. Almost all numbers in column 10 (MSL) are greater than those in

column 13 for the generalized mixed estimation, and  The t-tests intrVar(d̂)'100.4<trVar(d̃)'113.44.

column 14 show that all variables are significant at 5% including the relevant variable SURF89 which was

not important in explaining the probabilities of heating options 8 and 9 in the classical MNP results.

Furthermore, the GME requires only a half of replications (H=25) needed in the MNP simulation. There

is therefore a clear evidence that the GM estimator provides a more accurate prediction of the probabilities

of choosing space-water heating systems. Since these estimated choice  probabilities are used as variable

in the continuous choice, the GME technique will also provide better prevision of the electricity consumption

for space and water heating purpose.

However, we find as in BBB that the MNP model with stochastic interdependencies is consistent

with the data. Both  and  coefficients are significant at 5%.  The LR test of choosing between the MNPs ?

with 50 draws and the MNL formulation indicates rejection of the MNL  The(LR'61.53>?2
(4,5%)'9.49).

comparison between the GM MNP and the GM MNL from the LR test also leads to the rejection the GM
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MNL   It is then clear that the MNP model with AR(1) error structure is the most(LR'22.36>?2
(4,5%)).

appropriate framework for this application. As such, only the GME results for MNP model are discussed

in more details and used as input in the continuous model estimation. Let us now first discuss the variable

effects on alternative choices.

The constant term estimates exhibit a negative sign for all options. This is a clear indication of a

preference for electricity energy source for space and water heating over all available options. The most

important one is the electricity input in a  heating system, the more likely is the system to be chosen. Among

the 8 options, the least likely to be chosen are the gas/gas (-28.8) and 

oil/oil options (-18.1). In contrast, systems that have a fairly large electric space or water heating component

increases the probability of being selected than the gas/gas or oil/oil option. This includes for instance, the

wood-electricity/electricity option (-4.0), the wood-electricity choice (-5.9), and the gas/electricity (-6.2)

and dual energy/electricity systems (-7.1). Overall, the constant estimates reveal that an increase of

electricity input in a given heating system raises its probability to be bought. The population density (SECT)

increases from rural to urban areas. The estimates related to the effects of this variable show that households

living in higher density population areas are more likely to choose gas (1.999) than electricity (the reference

choice). As previously indicated, the gas distribution utilities are concentrated in urban areas which explains

the attractiveness of this option in high density-population regions. The estimates also indicate that the more

urban is the area, the lower is the probability of choosing the wood option (-0.748). The effect of a colder

climate (more heating degree-days, HDD) is an increase of the likelihood of choosing heating technologies

which use gas, oil and wood than electricity. The result can be understood through the impact of house size

(SURF). The coefficient estimates for systems 4, 5 and 6 are positive, while the effect is negative for systems

8 and 9. This suggests that the larger is the residence size, the higher is the probability of choosing the

systems which rely on dual energy and oil for space heating, and the less likely is the wood option to be

chosen (-0.130). The reason is that, despite their low capital costs, electric heating systems have relatively

high operating costs associated with large space heating requirements. As such, households dwelling in larger

detached houses are more inclined to choose heating systems that use oil or gas for space heating. On the

other hand, the negative impact of house size on wood heating system is due to the fact that larger detached

houses are mostly located in urban areas where this option is less attractive. In sum, colder weather (higher

HDD) combined with lager house or space heating size decrease the utility of electric heating systems. 

Furthermore, the results show that the older the household head (AGE) is, the higher the likelihood

of choosing dual energy/electric heating option (4), and the less likely he is to select wood for space heating

(alternatives 8 and 9). An explanation for this result is that the use of the latter system requires much physical
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efforts by users than the other types of energy. The findings also indicate that the higher the household

income (Y), the more likely he is to choose a technology using both space and water heating. Moreover,

the higher the annualized capital cost (PICP) and the operating cost (PIOP) of choosing a heating system,

the lower the probability of selecting that system. The positive effect of income interacted with fixed costs

(PICPY) indicates that richer households are more likely to choose more expansive heating systems.

2.3 Electricity Demand

From Roy’s identity and (3.1), total electricity demand conditional on the choice of heating systems

is given by the following linear equation (BBB):

(4.1)Xjn''
i0C

?i f ij % P̄ )?1 % z )
n?2 % a1(y&'

i0C
PIOPi f ij)% a2('

i0C
PICP if ij)% ?jn,

where  is the annual electricity consumption in Kwh,  is a vector of energy prices (electricity, oil andXjn P̄

gas),  is vector of both household and residence characteristics, and  is a random disturbance. Inzn ?jn

addition to the variables appearing in the choice model, the following household attributes are involved in

(4.1): HOUSETYPE (1-detached, 2-semi-detached, 3- row of 3 or more), NROOM (number of rooms),

OWNER (1= owner, 0=renter), and GASAVA (natural gas availability). Different effects of electricity price

are computed for households who use electricity for space heating (PELSPACE) and water heating

(PELWATER).

As indicated in section 2, we use only the reduced form (RF) method to estimate Equation (4.1).

In this method, the  in (4.1) are replaced by the estimated MNP choice probability  computed fromf ij Sn(i)

the GME technique in the first step (Dubin, 1985). The RF approach is free of estimation biases that can

arise due to the simultaneity between heating system choice and electricity use. 

Table 4 presents the RF estimation results. The first Panel provides the results when the choice

probabilities replacing the ’s in (4.1) are computed from the classical MLE of MNP model as in BBB,f ij

while those in the second Panel make use of the  estimated from the GME technique. As anticipated,Sn(i)

the model using the probabilities estimated from the GME approach performs better than that using the

probabilities simulated from a pure MNP model. Indeed, the t-test values given in the last column indicate

that relevant coefficients such as options 1, 2, and 5, as well as the electricity and oil prices, and SECT are

now significant in predicting electricity demand. Furthermore, the first segment of Table 4 shows that the

choice of gas (1 and 2), dual energy (3 and 4), oil (5 and 6) and wood (8) heating systems reduce

significantly electricity consumption (all their effects are negative). An increase in electricity price lessens
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electricity consumption, while the effects of increased oil price or gas price is increased electricity demand

(substitution effects). The higher the population density (SECT), the higher the electricity consumption. For

households living in non-detached houses (HOUSETYPE), electricity consumption is lower. The more

recent is the house construction date (DATACON) or the conversion date (DATACONV), the lower the

electricity consumption. The estimates in the last two columns also indicate that electricity consumption

increases with the size of the house (SURF), the number of persons (NBPERS), the number of rooms

(NROOM), and the age of the household head (AGE). Another noticeable result is that house owners use

less electricity than renters (OWNER). Electricity consumption appears to raise with household income

(YNET).Thus, electricity behaves like a superior goods since higher income increases both the probability

of choosing electric heating system and the use of electricity.

The short-run price and income elasticities of electricity demand were also computed. The results,

which are not presented in this paper, indicated that both price and income elasticities were relatively low

as evidenced in previous studies by BBB, Dubin and MacFadden (1984) and Neabakken (2001). They

are available upon request. Overall, the GME method provides better predictions for both the choice

probabilities of heating systems and electricity use.

4.  CONCLUSION

In this study, we applied the generalized mixed (GM) estimation approach suggested by Kalulumia

and Bolduc (1997) to the problem of estimating the Quebec residential electricity demand for space and

water heating from a discrete-continuous choice framework. A MNP model which assume correlation

between heating system choices were used as the discrete part of the model, while a linear model was

assumed for the estimation of the electricity consumption in the second stage. The model was estimated in

two steps because the computation of a simultaneous framework is almost unfeasible when the choices are

interdependent as evidenced in the current application. The reduced form method, which is free of the

simultaneity biases, was used to estimated the electricity demand. The results clearly indicate that the GM

estimator which combines prior and sample information dominates the classical ML estimator of the MNP

model  and hence, it provides better prevision for electricity consumption. Indeed, relevant explanatory

variables such as energy prices (electricity and oil), house size, and population densities become significant

in explaining both the choice probabilities and the electricity consumption. None of the simultaneous biases

mentioned by BBB were found in our estimation results (mainly the non significant coefficient to the price

of electricity).
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Finally, our findings improve over those by BBB and evidence the significant impact of heating-

equipment capital and operating costs, households characteristics, and energy prices on the choice of heating

systems and electricity consumption. In particular, substitution effects are now well predicted by the results.

An increase in the price of oil or gas shifts away from the use of those sources towards electricity and vice-

versa.
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Table 1: Prior information from the 1984 sample estimation
MNP MODEL MNP MODEL

Parameters Estimates (r) SE(r) Estimates (r) SE(r)

Gas/gas (1) -8267960 1.797680 -11.910074 2.796518

Gas/electricity (2) -3.088535 1.123079 -3.200600 1.206613

Dual energy/oil (3) -16.852293 1.166729 -17.906578 1.348011

Dual energy/electricity (4) -13.276907 0.709021 -14.295775 0.408339

Oil/oil (5) -6.602405 1.954823 -6.885588 3.720252

Oil/electricity (6) -3.226899 1.419837 -3.538395 1.426472

Wood/electricity (8) -4.837764 0.671495 -4.988068 0.699197

Wood-elec./electricity (9) -4.948458 0.720331 -5.072145 0.731778

SECT1 0.427273 0.115564 0.614446 0.173559

SECT23 0.130578 0.048043 0.143503 0.051341

SECT89 -0.062708 0.087760 -0.058957 0.093810

HDDM1 0.799878 0.279574 1.245504 0.420270

HDDM2 0.782520 0.220246 0.911045 0.233028

HDDM5 0.863009 0.256623 0.918592 0.556169

HDDM6 0.136446 0.265906 0.164469 0.253893

HDDM89 0.868050 0.103437 0.940889 0.109274

DATCONV1 0.173753 0.060812 0.168706 0.062753

DATCONV3 1.192571 0.086109 1.298565 0.099981

DATCONV4 1.032517 0.051952 1.125477 0.027747

DATCONV5 -0.037166 0.084367 -0.020862 0.094364

DATCONV6 0.085274 0.027737 0.112921 0.025572

DATCONV9 0.005572 0.019786 0.009256 0.019967

DATCON12 -0.215695 0.034009 -0.278131 0.052389

DATCON3 0.139242 0.027684 0.138831 0.033969

DATCON5 -0.105359 0.094883 -0.120336 0.105228

DATCON89 -0.063261 0.013330 -0.093182 0.014698

NBPERS1 0.136813 0.089813 0.209683 0.136741

NBPERS2 -0.179484 0.106699 -0.177232 0.105791

NBPERS3 0.174803 0.047239 0.161492 0.049700

NBPERS5 0.282026 0.102865 0.276197 0.130489

NBPERS6 -0.096261 0.109467 -0.102239 0.102274

NBPERS8 0.186702 0.045369 0.207042 0.049130

SURF4 0.149138 0.062076 0.170876 0.070450

SURF56 0.182020 0.164283 0.204720 0.175425

SURF89 0.288604 0.083917 0.336615 0.090868

AGE1 0.115653 0.076652 0.181163 0.106842

AGE4 0.097401 0.025882 0.098506 0.029172

AGE89 -0.263667 0.039703 -0.272339 0.044233

Y2 -0.332906 0.086779 -0.423370 0.089341

Y3 -0.434899 0.064142 -0.544794 0.073517

Y4 -0.296365 0.042489 -0.366256 0.047768

Y56 -0.639938 0.086800 -0.744752 0.087735

Y8 -0.693400 0.057414 -0.747076 0.054510
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Y9 -0.641940 0.080025 -0.718190 0.085366

PIOP -2.079388 0.811233 -1.681957 0.909785

PICP -2.889704 0.301870 -3.369533 0.312797

PICPY 1.079368 0.089761 1.270001 0.094666

Table 2: GM and ML estimation results for the heating-system choice model

Model specification MNL GMEMNL MNP GMEMNP

Parameters Groups Estimates t-tests Estimates t-tests Estimates t-tests Estimates t-tests

Gas/gas (1) 1 -16.571 -3.789 -16.001 -5.516 -28.216 -3.593 -28.814 -3.465

Gas/electricity (2) 2 -8.038 -2.293 -8.083 -4.540 -6.114 -1.358 -6.187 -2.010

Dual energy/oil (3) 3 -5.769 -5.908 -5.668 -9.554 -5.771 -3.232 -7.098 -5.478

Dual energy/elec. (4) 3 -5.306 -7.630 -4.463 -9.602 -5.129 -4.858 -7.728 -198.11

Oil/oil (5) 2 -16.823 -7.225 -16.609 -7.939 -18.126 -5.402 -18.143 -5.545

Oil/electricity (6) 4 -9.686 -5.166 -9.669 -5.743 -10.044 -5.953 -10.135 -7.089

Wood/electricity (8) 5 -2.957 -3.347 -2.650 -7.625 -8.741 -4.488 -5.882 -10.059

Wood-elec./elec. (9) 3 -1.709 -1.886 -1.732 -6.187 -6.571 -3.486 -3.955 -5.764

SECT1 9 0.716 3.205 0.709 4.685 1.169 2.602 1.199 2.495

SECT23 1 0.273 2.715 0.289 4.278 0.285 1.743 0.383 1.439

SECT89 12 -0.5209 -5.177 -0.526 -5.553 -0.979 -5.514 -0.748 -6.250

HDDM1 2 2.215 2.752 2.088 3.919 3.914 2.925 3.701 1.904

HDDM2 1 1.492 2.125 1.533 4.306 1.327 1.566 1.412 2.323

HDDM5 2 2.173 6.733 2.174 7.441 2.489 5.870 2.588 5.792

HDDM6 13 1.408 4.428 1.438 4.914 1.627 5.358 1.634 5.755

HDDM89 5 0.396 3.036 0.460 8.270 1.374 4.512 1.046 11.093

DATCONV1 8 0.193 1.941 0.194 3.870 0.408 2.283 0.392 2.794

DATCONV3 5 0.631 7.429 0.620 11.951 0.739 3.755 0.746 5.410

DATCONV4 5 0.518 10.282 0.542 13.382 0.581 7.419 0.927 56.77

DATCONV5 14 0.468 3.881 0.466 4.059 0.591 3.370 0.491 2.898

DATCONV6 4 0.257 3.541 0.264 4.488 0.325 4.384 0.335 4.608

DATCONV9 15 0.081 1.806 0.088 2.357 0.042 0.920 0.020 0.385

DATCON12 8 -0.268 -3.724 -0.253 -6.973 -0.345 -3.486 -0.373 -2.784

DATCON3 5 0.064 0.920 0.073 4.673 0.099 0.629 0.102 0.769

DATCON5 10 0.136 1.125 0.136 1.186 0.171 0.944 0.109 4.569

DATCON89 6 -0.046 -1.573 -0.051 -4.841 -0.169 -3.114 -0.095 -1.369

NBPERS1 19 -0.435 -2.415 -0.445 -2.640 -0.662 -2.136 -0.750 -1.581

NBPERS2 8 -0.176 -0.778 -0.201 -1.919 -0.414 -1.409 -0.325 -1.621

NBPERS3 4 0.548 4.642 0.616 7.175 0.704 3.260 0.921 5.761

NBPERS5 4 0.888 4.592 0.892 5.243 1.101 4.600 1.170 5.148

NBPERS6 17 0.366 2.144 0.366 2.183 0.481 2.440 0.517 3.236

NBPERS8 16 -0.364 -4.743 -0.408 -6.039 -0.415 -4.126 -0.564 -9.131

SURF4 2 0.399 2.574 0.327 3.060 0.517 2.309 0.686 3.667
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SURF56 4 0.517 2.031 0.528 2.315 0.673 2.293 0.690 2.272

SURF89 18 -0.151 -1.335 -0.147 -1.419 0.272 1.224 -0.130 -2.925

AGE1 4 0.339 2.263 0.353 2.781 0.328 1.058 0.447 1.018

AGE4 7 0.331 4.669 0.226 4.775 0.342 2.848 0.356 4.396

AGE89 1 -0.448 -6.640 -0.486 -10.458 -0.835 -6.297 -0.664 -8.185

Table 2. (Continued)

Model specification MNL GMEMNL MNP GMEMNP

Parameters Groups Estimates t-tests Estimates t-tests Estimates t-tests Estimates t-tests

Y2 1 -0.605 -3.585 -0.625 -5.214 -0.842 -5.088 -1.043 -4.806

Y3 9 -0.593 -4.925 -0.661 -7.399 -0.849 -4.768 -0.911 -7.229

Y4 9 -0.438 -5.014 -0.480 -7.346 -0.649 -4.562 -0.646 -4.131

Y56 6 -0.451 -3.992 -0.503 -7.535 -0.611 -4.463 -0.71 -6.062

Y8 8 -0.759 -11.272 -0.785 -14.298 -1.198 -12.069 -1.083 -15.28

Y9 6 -0.485 -6.329 -0.500 -9.360 -0.888 -7.727 -0.802 -7.664

PIOP 11 -9.757 -21.941 -9.527 -23.127 -13.486 -18.788 -13.176 -24.87

PICP 8 -2.821 -5.894 -3.166 -10.346 -4.332 -5.908 -4.694 -12.579

PICPY 6 0.816 7.858 0.861 11.160 1.155 6.965 1.302 8.477

SIG1 0.956 2.472 1.029 1.99

SIG2 0.001 0 0.037 0.357

SIG3 1.363 4.104 0.548 2.013

RHO1 0.763 12.389 0.816 8.515

MU01 1.922 9.265 2.511 4.897

MU02 2.505 7.602 3.586 4.331

MU03 0.335 9.448 0.552 75.691

MU04 3.294 5.345 3.750 11.723

MU05 0.524 12.155 0.832 249.215

MU06 0.819 10.740 1.114 16.501

MU07 2.231 3.209 6.364 2.453

MU08 1.143 11.993 1.525 37.885

MU09 1.636 6.775 1.933 9.196

MU10 -1.284 -0.868 -0.732 -4.875

MU11 4.354 2.939 2.891 41.270

MU12 10.924 0.561 20.806 1.230

MU13 16.995 0.702 13.659 2.239

MU14 -12.729 -0.809 -14.921 -0.689

MU15 17.109 0.268 0.929 1.899

MU16 -2.087 -3.425 -11.036 -3.035

MU17 -3.690 -0.843 -4.967 -1.469

MU18 -0.516 -1.287 -0.360 -10.236
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MU19 -3.393 -1.287 -11.127 -0.192

Model LR-tests 1981.607 2045.141 2557.15 1816.445

Trace of 45.709 20.733 113.435 100.439Var(d̂)

Log-likelihood 1592.451 1639.346 1561.684 1628.165

Notes: *The 5% critical value of the t-statistic is: 1.96. The critical values for the LR-tests are respectively,  for?2 ?(47,5%)'64
MNL,  for GMEMNL,  for MNP, and  for GMEMNP.?(66,5%)'85.97 ?(51,5%)'68.67 ?(70,5%)'90.53
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Table 3: Estimation Results for the Electricity Demand Model

REDUCED FORM 
With MLE of

MNP Choice Probabilities

REDUCED FORM 
With GME of

MNP Choice Probabilities

Parameters Estimates t-tests Estimates Estimates 

Constant (7) 15320.5 1.38 1345.12 1.71
Sn(1) -7260.39 -1.94 -6501.43 -3.45
Sn(2) -1648.32 -0.1 -1350.63 -2.87
Sn(3) -7763.22 -2.54 -7012.32 -3.11
Sn(4) -9746.17 -3.67 -8567.23 -5.61
Sn(5) 17450.45 1.76 -1456.12 -2.31
Sn(6) -55284.86 -2.64 -4989.89 -2.89
Sn(8) -9068.57 -3.7 -8312.56 -3.5
Sn(9) 16633.07 1.55 -15976.16 -1.95
Electricity price -33111.14 -1.75 -30872.02 -2.76

PELSPACE 191874.78 8.34 191897.89 1.73
PELWATER 12445.71 2.22 105500.91 1.43

Oil price 29404.22 0.12 27345.23 3.12
Gas price 124123.12 2.7 11541.12 2.74

SECT 262.41 1.73 261.34 2.66
HOUSETYPE -523.78 -7.61 -545.01 -7.45

DATCONV -348.23 -2.51 -350.25 -2.61
DATCON -723.12 -7.32 -710.25 -8.71

NROOM 738.87 6.12 616.2 5.23
NBPERS 1435.12 8.17 1501.01 9.2

SURF 3.12 9.71 2.89 7.62
OWNER -1520.17 -3.09 -1242.17 -4.51

AGE 70.23 4.67 60.02 3.23
YNET(weighted) 0.06 4.34 0.04 3.3

PICP(weighted) 2.8 3.2 3.02 4.01
GASAVA -150.61 -0.7 -167.67 -1.05

0.341 0.35R̄2
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