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Abstract

This paper studies the finite sample performance of the sieve bootstrap aug-
mented Dickey-Fuller (ADF) unit root test. It is well known that this test’s ac-
curacy in terms of rejection probability under the null depends greatly on the
underlying DGP. Through extensive simulations, we find that it also depends on
the numbers of lags employed in the bootstrap DGP and in the bootstrap ADF re-
gression. Based on this finding and using some well established theoretical results,
we propose a simple modification that significantly improves the test’s accuracy.
We also introduce different versions of the fast double bootstrap, each modified
according to the same theoretical basis. According to our simulations, these new
testing procedures have lower error in rejection probability under the null while
retaining good power.
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1 Introduction

It is a well established fact that Augmented Dickey-Fuller (ADF) tests may severely
over-reject the unit root hypothesis when the first difference of the process under
scrutiny is a linear model which cannot be written as a finite order AR(p) model,
see, among many others, Schwert (1989). The simple bootstrap, which often helps
to increase finite sample accuracy of tests statistics, is not appropriate in such
cases because it is not generally possible to reduce the problem to i.i.d. resampling.
Thus, more complicated and specialised bootstrap methods must be used.

One such method, called the sieve bootstrap, was introduced by Bühlmann
(1997) and was applied to unit root testing by Psaradakis (2001), Park (2002),
Chang and Park (2003), Palm et al. (2007) and Richard (2007). Typically, an
autoregression of order p is used to approximate the true model and bootstrap
samples are drawn by i.i.d. resampling from its residuals. As shown by Chang
and Park (2003) letting p increase at a proper rate of the sample size yields as-
ymptotically valid ADF tests. The choice of an AR(p) approximation is motivated
only by ease of estimation considerations. Indeed, Richard (2007) shows that sieve
bootstrap ADF tests based on MA and ARMA approximations are asymptotically
valid and may sometimes perform better than AR sieve bootstrap tests in finite
samples. We will not consider these MA and ARMA sieve bootstraps in the present
paper. Thus, the term sieve bootstrap will henceforth be used to designate the
AR sieve bootstrap alone.

The theory of the bootstrap for unit root processes is not as thoroughly devel-
oped as it is for stationary ones. In particular, in spite of the fact that the ADF test
statistics may be shown to be an asymptotic pivot under fairly weak conditions,
the existence of bootstrap asymptotic refinements in the sense of Beran (1988) has
so far only been proved under somewhat restrictive assumptions.1 There is there-
fore no unequivocal theoretical reason to advocate the use of the sieve bootstrap
ADF test over that of the usual asymptotic version. However, there is a large
body of simulation evidence to the effect that sieve bootstrap ADF tests may be
more accurate under the null than asymptotic ones, see for example, Chang and
Park (2003), Palm et al. (2007) and Richard (2007). According to these papers,
the extent to which the sieve bootstrap improves finite sample inference accuracy
over asymptotic theory is function of the sample size and of the underlying data

1Park (2003) has shown that such refinements do exist for I(1) processes but his proofs
require rather strict assumptions such as a first difference process that is AR(p) with p finite
and known.
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generating process (DGP).

In this paper, we find that the accuracy of the sieve bootstrap also depends
greatly on the manner in which the sieve bootstrap model and ADF regressions
are set up. In particular, we argue that the difference between the correlation
structure of the residuals of the original data ADF regression and that of the sieve
bootstrap ADF regression is an important factor. Based on this, we propose a
simple modification to the usual sieve bootstrap ADF testing procedure which
reduces the error in rejection probability (ERP). In order to obtain a greater ac-
curacy gain under the null, we propose four modified versions of the fast double
bootstrap (FDB) introduced by Davidson and MacKinnon (2007). The finite sam-
ple properties of these methods are explored through a Monte Carlo study.

The paper is organised as follows: section 2 briefly introduces the ERP prob-
lem of the ADF unit root test. Section 3 presents the usual sieve bootstrap test
and proposes two slightly modified versions that have, according to simulation ev-
idence, better finite sample properties under the null. In section 4, the fast double
bootstrap is introduced along with some modifications that greatly reduce its ERP.
The finite sample power of those different versions of the sieve bootstrap ADF test
is investigated in section 5. Section 6 concludes.

2 ADF unit root test

We consider an I(1) time series yt which is generated by a DGP belonging to the
model:

yt = yt−1 + ut (1)

ut = π(L)εt (2)

where L is the lag operator and π(L) is a lag polynomial such that ut is an in-
vertible, possibly infinite order MA process. Under proper assumptions on εt and
π(L) such as those made by Chang and Park (2003), this model is general enough
to nest all ARIMA(p, 1, q) processes with stationary and invertible first difference.
Since we do not derive any theoretical results, we do not state these assumptions
here, see Chang and Park (2003) for details. The widely used ADF unit root test
is based on testing the hypothesis that γ = 0 against the alternative γ < 0 in the
regression:

∆yt = γyt−1 +
k

∑

i=1

γi∆yt−i + et (3)
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where k has to be chosen by the investigator and a constant and a deterministic
trend may be added. In all that follows, we will refer to this equation as the ADF
regression. The ADF unit root test may be conducted by computing the usual
t-statistic for γ = 0, which we will refer to as τ .

Econometric theory provides results about the asymptotic distribution of τ
when k tends to infinity at a proper rate of the sample size. Most notably, Phillips
(1987) and Chang and Park (2002) show that the asymptotic distribution of τ is
the now well known DF distribution (which we will denote by FDF ). In practice
however, one has a finite number of observations and must choose one value of k
to carry out the test. Techniques for the choice of k in finite samples are discussed
in several papers see, among others, Ng and Perron (2001).

Galbraith and Zinde-Walsh (1999) derive the asymptotic distribution of τ when
k is fixed, even as n tends to infinity, and ut is an invertible MA(q) process. It
turns out that this distribution is a function of FDF , but it is shifted and somewhat
deformed by factors that depend on k and the sign of the root of the MA(q) process
that is closest to unity.

In particular, when ut is a MA(1) process with a sole parameter θ, Galbraith and
Zinde-Walsh (1999) show that the asymptotic distribution of the ADF test, F∞(τ),
shifts to the left when θ is negative and that the extent of this shift increases as θ →
−1 and is inversely related to k. Intuitively, this shift is due to the near cancellation
of the unit root with the root of the MA polynomial. As θ approaches -1, this near
cancellation becomes more complete, so that yt increasingly resembles a stationary
process. Increasing k allows one to capture more of the infinite autoregressive
structure of ut and thus remove the near-cancellation problem. An illustration of
this point is found in figure 1, which shows the position of F (τ), the true finite
sample distribution of τ under the null, with respect to FDF . This figure was
generated using 500 000 Monte Carlo samples of an I(1) process such as the one
described in equations ( 1) and ( 2) where ut was a simple MA(1) process with a
single parameter θ and k = 0 and k = 4.
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Figure 1. ADF test distribution, n = 100.

When ut is a MA(1) process with a positive parameter, no near cancellation of
the roots occur. Galbraith and Zinde-Walsh (1999) show that F∞(τ) is then not
much different from FDF even for small values of k. Thus, their results provide a
theoretical explanation to the often observed fact that the ADF test based on FDF

over-rejects when a large negative MA(1) component is present but not when the
MA(1) parameter is positive.

3 Sieve bootstrap unit root tests

The sieve bootstrap consists of approximating (2) with a finite order AR(p) model

ut = α1ut−1 + α2ut−2 + ... + αput−p + εp,t (4)

where εp,t is uncorrelated with ut−i, i = 1, 2, ..., p. The sieve bootstrap DGP is
then

y?
t = y?

t−1 + u?
t

where

u?
t =

p
∑

i=1

α̂iu
?
t−i + ε?

t . (5)

where ε?
t is drawn from the empirical density function (EDF) of the residuals of

the AR(p) model estimated on ∆yt (thus imposing the null hypothesis) and α̂i is a

5



consistent estimator of αi.
2 The sieve bootstrap test statistics (τ ?

j ) are obtained by
testing the hypothesis that γ = 0 against the alternative γ < 0 in the regression:

∆y?
t = γy?

t−1 +
k′

∑

i=1

γi∆y?
t−i + vt. (6)

Let F̂ ?
B(τ) denote the EDF of the τ ?

j , j = 1, 2, ..., B and F ?(τ) be its limit as
B → ∞, where B is the number of bootstrap samples generated. Under the
assumption that p and k′ go to infinity at a proper rate of n, Chang and Park
(2003) show that this sieve bootstrap ADF test is asymptotically valid, that is,
that F ?(τ)

a
= FDF + o(1).

If ut is a MA(1) process with a negative parameter (or any other MA(q) DGP
that results in over-rejection), then, according to the results of Galbraith and
Zinde-Walsh (1999), in order to reduce the ERP for some fixed k, a sieve bootstrap

test procedure must provide a null distribution F̂ ?
B(τ) that is shifted to the left

with respect to FDF . As we will now see, whether of not this goal is achieved
greatly depends on how the sieve bootstrap DGP is built and on the specification
of the sieve bootstrap ADF regression (equation 6, hereafter, SB ADF regression).

Under the null hypothesis that γ = 0, equation (3) becomes an AR(k) model.
Assuming invertibility, ∆yt has an AR(∞) form, so that this AR(k) model is under-
specified. Thus, for any finite k, the errors of (3) are not i.i.d. On the other hand,
∆y?

t is by construction an AR(p) process and y?
t is I(1). Thus, the errors of (6) are

i.i.d. whenever k′ ≥ p. In such cases, standard results imply that F̂ ?
B(τ) is close to

FDF . Hence, if (3) is largely under-specified and if k′ ≥ p, then the sieve bootstrap
should not be expected to work any better than the asymptotic test. Specifically,
for relatively low values of p and k′ ≥ p, the SB ADF test should be expected to
over-reject as much as the ADF test when θ is close to -1 because the bootstrap
does not properly replicate the near-cancellation of the unit root and the errors of
(6) are not correlated in a manner similar to those of (3). This point is illustrated
by the simulations reported in figure 2, which are based on 10 000 Monte Carlo
repetitions and B = 499.3

2Paparoditis and Politis (2005) suggest resampling from ε̃t = yt − ρ̃yt−1 −

∑p

i=1
α̃i∆yt−i.

They show that this may result in increased power. According to some simulations based on
this alternative procedure, it results in tests with, on average, slightly higher ERP than tests
based on resampling the residuals of (4). Further, the modifications proposed below do not
work as well for this alternative resampling scheme.

3Unless otherwise specified, all ADF tests are performed with a constant and no determin-
istic trend.
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Figure 2. Rejection probability (RP) at nominal level 5%, n = 100.

Nevertheless, according to the simulations of Chang and Park (2003), the sieve
bootstrap is able to provide more precise inference than the test based on asymp-
totic theory. This results from the fact that they do not impose that k′ = p but
rather select the two independently using the AIC. Figure 3 shows the results of a
set of simulations using samples of 100 observations where p, k and k′ are chosen
by the AIC with a maximum of 12 lags. It is obvious that relaxing the constraint
k′ = p results in the sieve bootstrap providing more accurate ADF tests under the
null.

Figure 4 shows the mean values of p, k and k′ chosen by the AIC. The three of
them are approximately the same for all θ ≥ −0.35, which correspond to the area
in figure 3 where the two tests perform similarly. On the other hand, there are
important differences between them for θ < −0.35. Precisely, the AIC selects lower
average orders for the ADF regressions estimated on the original and bootstrap
data (k and k′) than for the sieve bootstrap DGP (p). Since this difference increases
as θ → −1, it is not unreasonable to postulate that this results from the root near
cancellation known to occur between the MA(1) part and the unit root. Both
figures are based on 10 000 Monte Carlo samples with B = 499.

It is easy to see that the difference between k′ and p is responsible for the
accuracy gain of the SB ADF test. Indeed, under the null, whenever k′ < p
equation (6) is an AR(k′) process that underspecifies the AR(p) sieve bootstrap
DGP. Furthermore, as noted before, the ADF regression (3) is an AR(k) that also
underspecifies the true AR(∞) DGP.
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Figure 3. RP at nominal level 5%, n = 100.

Figure 4. Mean values of p, k and k′, n = 100.

Since the sieve bootstrap DGP (5) consistently estimates the true AR(∞) DGP
as n → ∞ (Park, 2002), it follows that the errors of (6) have a correlation structure

similar to that of the errors of (3). Thus, F ?(τ), and consequently F̂ ?
B(τ), also shift

to the left. Hence, the critical value of F̂ ?
B(τ) is larger in absolute value than that of

FDF , which reduces the rejection frequency. In fact, if k′ = k is fixed and finite as
n → ∞ while p → ∞, the results of Galbraith and Zinde-Walsh (1999) applied to
the bootstrap DGP imply that, asymptotically, F ?(τ) shifts to the left in exactly
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the same fashion as F (τ), so that the sieve bootstrap test is asymptotically valid.4

This is illustrated in table 1, which reports the rejection probability of the sieve
bootstrap test obtained from a set of Monte Carlo simulations in which k′ = k = 4
for different values of n and with p increasing as a function of n. We used 4 000
Monte Carlo samples with θ = −0.85 and 499 bootstrap samples each. As can be
seen, the sieve bootstrap test’s RP converges to 0.05 as n → ∞ even though k and
k′ remain fixed.

Table 1. Rejection probability, θ = −0.85.

n p ≈ n2/5 RP
100 6 0.2345
500 12 0.1195
1000 15 0.09975
5000 30 0.04425
10000 39 0.04875

To investigate this point further, we ran simulations for four MA(1) DGPs with
θ = −0.95, -0.6, 0.2 and 0.6 with p and k fixed at 10 and k′ = p − `, with ` going
from 0 to 9. The sample size was again 100, B = 499 and 10 000 Monte Carlo
repetitions were used. The results are presented in figure 5. The sensitivity of
the RP to the difference between p and k′ is evidently greatly dependent on the
underlying DGP. Of particular interest is the fact that, for all values of θ, there is
at least one value of ` such that the SB ADF test has no or very little ERP.

The curve for θ = −0.6 provides some interesting insight on the effect of `. Since
k = 10, the errors of the ADF regression (3) are almost uncorrelated. However,
as ` increases, the correlation captured by the p − ` last lags of the sieve model
moves into the errors of the SB ADF regression. For low `, these last p − ` lags
do not represent much dependence, so that the SB ADF regression’s errors are
only weakly correlated and the ERP remains low. As p − ` increases however,
more correlation gets transferred to the errors of the SB ADF regression. As this
happens, F̂ ?

B(τ) shifts to the left and its critical value becomes larger in absolute
value, which eventually causes under-rejection. As the difference between p and k′

increases, the severity of the under-rejection becomes greater. Eventually, a point
is reached where the bootstrap distribution is so far to the left that rejection does
not occur anymore.

4This asymptotic validity is actually shown by Park (2002) for the simple DF test (k′ =
k = 0).
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Figure 5. RP at nominal level 5% as a function of k′, n = 100.

Of course, ` also decreases the RP of the SB ADF test under the alternative.
Thus, in order to use these findings to reduce the SB ADF test’s ERP with a
minimum chance of under-rejection and power loss, it is necessary to use a rather
large ` when θ is close to -1 and a small one otherwise. Figure 4 suggests that
a very simple way to accomplish this is to have k and p selected by AIC and to
set k′ = k. This idea was put to the test in yet another set of simulations, the
results of which are presented in figure 6. The setting was exactly the same as
in figures 3 and 4, except that the restriction k′ = k was imposed. We will call
this version of the sieve bootstrap the modified sieve bootstrap of the first type
(MSB1). Obviously, imposing this restriction reduces the SB ADF test’s ERP.

Nonlinear restrictions can also be imposed on k′. A simple one is k′ = max{k′

0−
(k′

0 − k)i, 0}, where k′

0 is the lag order selected by AIC for the SB ADF regression.
For i = 1, this rule simplifies to k′ = k. Simulations were run with i = 2 and are
reported in figure 6 under the label MSB2. As can be seen this MSB2 ADF test
has even lower ERP than the MSB1 ADF test. Additional simulations have shown
that these restrictions have similar effects for samples of 50 and 200 observations,
although the MSB2 ADF test under-rejects a little for θ around -0.7 with 200
observations. The results are also robust to the inclusion of a deterministic time
trend in the ADF regressions and hold for tests at nominal level 1% and 10%. The
restrictions’ effect on power is investigated in section 5.
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Figure 6. RP at nominal level 5%, n = 100.

4 The fast double bootstrap

The previous section has shown that the ERP of the ADF test can be reduced
by various versions of the sieve bootstrap but that substantial ERP remains. The
fast double bootstrap (FDB) introduced by Davidson and MacKinnon (2007) is a
method that is often useful when normal bootstrap procedures fail to reduce ERP
in a satisfactory manner. The FDB is inspired by the double bootstrap proposed
by Beran (1988). Let G(x) denote the CDF of the bootstrap test’s P value. Then,
in the ideal case where F (τ) = F ?(τ) and B = ∞, G(x) simply is the uniform
distribution on the unit interval. In reality, B is finite and there may be differences
between F (τ) and F̂ ?

B(τ). Thus, G(x) is almost certainly not U(0, 1).

The double bootstrap attempts to estimate G(x) by generating B′ second level
bootstrap samples for, and based on, each first level bootstrap sample. Thus, every
first level bootstrap test statistics τ ?

j is accompanied by B′ second level bootstrap
statistics, τ ??

j,i . This allows to compute a set of B second level bootstrap P values
p̂??

j which are used to obtain an estimate of G(x). The double bootstrap P value
is then calculated as:

p̂??(τ̂) = ĜB′(p̂?(τ̂)) =
1

B

B
∑

j=1

I
(

p̂??
j ≤ p̂?(τ̂ )

)

(7)

where p̂?(τ̂) is the first level bootstrap P value and τ̂ denotes the value of τ
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calculated on the given sample. If G(x) is U(0, 1) and if B′ and B are infinite,
then p̂??(τ̂) = p̂?(τ̂). On the other hand, suppose that the first level bootstrap test

tends to over-reject. This means that F̂ ?
B(τ) generates too few extreme values of

the test statistic compared to F (τ). Hence, p̂?(τ̂ ) tends to be too low. If F̂j
??

B′(τ),
the distribution of the second level bootstrap statistics, also generates too few
extreme test statistics with respect to F̂ ?

B(τ), then p̂??
j will tend to be too low as

well compared to p̂?(τ̂). Thus, by definition (7), the double bootstrap P value
will tend to be higher than p̂?(τ̂) and, consequently, the double bootstrap will not
over-reject as much as the bootstrap. See Davidson and MacKinnon (2007) and
MacKinnon (2006) for a more detailed exposition.

Although the idea of the double bootstrap is quite compelling, it has one major
drawback in that, in order to achieve any acceptable level of accuracy, it requires
that both B and B′ be large, which often translates in intolerably long computing
times. The FDB is designed to achieve the same objective as the double bootstrap
at a much lower computational cost.

The FDB consists of drawing one second level bootstrap sample from each first
level bootstrap sample and calculating the relevant test statistic from each of these
samples. What results is a set of B first level bootstrap statistics (τ ?

j ) and a set of
B second level bootstrap statistics, which we call τ ??

j . Then, for a one-tailed test
that rejects to the left, the FDB P value is calculated as follows:

p̂??
F (τ̂) =

1

B

B
∑

j=1

I
(

τ ?
j < Q̂??

B (p̂?(τ̂))
)

, (8)

where Q̂??
B (p̂?(τ̂)) is the p̂?(τ̂) quantile of the distribution of the τ ??

j and is defined
by the equation:

1

B

B
∑

j=1

I
(

τ ??
j < Q̂??

B (p̂?(τ̂))
)

= p̂?(τ̂). (9)

MacKinnon (2006) shows that if the distribution of τ ??
j,i does not depend on τ ?

j ,
then p̂??

F (τ̂) is equivalent to p̂??(τ̂) when B and B′ tend to infinity. It is well known
that FDF does not depend on any of the parameters of the DGP. Further, the
results of Chang and Park (2003) imply that the asymptotic distribution of the
τ ??
j,i also is FDF (indeed, the bootstrap DGP (5) meets all the conditions necessary

for the results of Park, 2002 and Chang and Park, 2003 to apply). We may thus
expect the FDB to perform asymptotically as well as the double bootstrap. The
extent to which this is true in finite samples depends on the degree of finite sample
independence between τ ??

j,i and τ ?
j , which itself depends on several factors such as
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the DGP and the sample size. Simulation results comparing the double bootstrap
with the FDB are provided at the end of the next subsection.

The accuracy of the FDB therefore depends on that of the double bootstrap.
In turn, this depends on how well ĜB′ estimates G. For this estimation to be

precise, it must be the case that F̂j
??

B′(τ) generates too few extreme test statistics

with respect to F̂ ?
B(τ) in a proportion similar to that of F̂ ?

B(τ) relative to F (τ).
For this to be so, it is necessary that a similar relation exists between the second
level bootstrap DGPs and the first level bootstrap DGP than between the first
level bootstrap DGP and the original DGP. In subsection 4.2, we will introduce
some modifications to the FDB that make use of this fact to obtain more precise
ADF tests.

4.1 A fast double sieve bootstrap

We propose to use a fast double sieve bootstrap (FDSB) ADF test which is carried
out through the following steps.

1. Estimate the ADF regression (3) with k lags and calculate the ADF statistic τ̂ .
Fit an AR(p) model to ∆yt. Call the residuals ε̂t,p. It may be wise to center the ε̂t,p

to make sure that their average is 0. Also, if OLS is used, the centered residuals
should be rescaled to correct their variance. See Davidson and MacKinnon (2004,
chap. 4).

2. Draw bootstrap errors from the EDF of the centered and rescaled ε̂t,p and build
the bootstrap pseudo-series u?

t using the parameters estimated in step 1.

3. For each of the bootstrap samples, calculate τ̂ ?
j using the ADF regression (6)

with k′ lags. Also, fit an AR(p′) model to u?
t and save its rescaled and centered

residuals ε̂?
t,p′.

4. Draw bootstrap errors from the EDF of ε̂?
t,p′ and build the second level bootstrap

pseudo-series u??
t and y??

t using the parameters estimated in step 3. For each of
the bootstrap samples, calculate τ̂ ??

j using the ADF regression (6) estimated with
y??

t and k′′ lags.

5. Repeat steps 2 to 4 B times and calculate the FDSB ADF test P value as
defined by equation (8).
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In order to evaluate the accuracy of the FDSB ADF test, we have conducted an
experiment based on 5 000 simulated samples of 100 realisations of the ARIMA(0,1,1)
process described above. In our experiment, we have set B = 599 and used the
AIC to select p, k, k′, p′ and k′′ separately. Once more, a maximum of 12 lags
was imposed.5 The results are presented in figure 7. The FDSB has an ERP
comparable to that of the simple sieve bootstrap for most of the parameter space
considered except when θ is large and negative, where the FDSB has a smaller
ERP than the usual sieve bootstrap.

Figure 7. RP at nominal level 5%, n = 100.

We have mentioned that all conditions are satisfied for the fast double sieve
bootstrap to be asymptotically equivalent to the double bootstrap. This does not
mean that they should have similar characteristics in small samples. Hence, we
have compared the two methods with a small simulation experiment. Because
of the very high computational time of the double bootstrap, we have restricted
ourselves to 1 000 simulated samples and have set B = 399 and B′ = 299. For the
same reason, samples of only 50 observations were used. The results, which are
reported in table 2, indicate that the FDSB ADF test has similar properties than
its double bootstrap counter-part.

5Similar results were obtained with a maximum of 16 lags.
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Table 2. RP, double bootstrap and FDSB ADF tests.

θ -0.85 -0.55 0.55 0.85
FDSB ADF 0.420 0.144 0.046 0.039
DSB ADF 0.402 0.128 0.049 0.043

4.2 Modified fast double sieve bootstraps

We saw in section 3 that basing the choice of k′ on our knowledge of the cause of
the sieve bootstrap ADF test’s over-rejection allowed us to obtain a more precise
test. Conducting a similar exercise here seems in order. Simulations based on 5
000 samples and B = 599 and imposing k′ = k in step 3 of the FDSB algorithm
are reported in figure 8. We call this testing procedure the modified fast double
sieve bootstrap of the first type (MFDSB1). It can be seen that the resulting
MFDSB1 ADF test has significantly lower ERP for DGPs with θ close to -1 than
any procedure considered thus far. On the other hand, it slightly over-rejects for
some positive values of θ. In addition, figure 8 shows that using a procedure which
we label MFDSB2, by which the nonlinear restriction that leads to the MSB2 is
imposed rather than k′ = k, decreases the ERP even further for values of θ close
to -1.

It is also possible to reduce ERP by imposing a restriction on the lag order
of the second level bootstrap ADF regression. For DGPs where the SB ADF
test over-rejects, F (τ) is shifted to the left with respect to F̂ ?

B(τ). It is therefore

necessary that F̂ ?
B(τ) be to the left of F̂ ??

B (τ), the distribution of the second level
bootstrap statistics. Meanwhile, any steps we take to achieve this should not cause
the FDSB ADF test to under-reject with DGPs where it already performs well. A
very simple way to achieve this is to set k′′ = p′ in step 4 of the FDSB algorithm,
so that the second level bootstrap ADF regression has errors that are uncorrelated.
It then follows that the second level test statistics have a distribution close to FDF ,
which is to the right of F̂ ?

B(τ) when θ is close to -1 but approximately coincides
with it when θ is far from -1. We call the FDSB imposing this restriction the
MFDSB3. Figure 8 shows that this provides a test with somewhat lower ERP
than the MFDSB1 for values of θ close to -1. This MFDSB3 test does, however,
under-reject a bit for some positive θs. Finally, we investigate the accuracy of a
procedure that combines this restriction with k′ = k. We call it MFDSB4. The
simulations reported in figure 8 indicate that it has extremely low ERP. 6

6The features of figure 8 are robust to the inclusion of a deterministic time trend, different
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Figure 8. RP at nominal level 5%, n = 100.

5 Power Considerations

Before advocating the use of any of the modified sieve bootstrap procedures pro-
posed above in practical applications, it is necessary to study their power. Let
ut = θεt−1 + εt and yt = ρyt−1 + ut, where ρ = 1 − c/n, c = 5 or 10 and εt is
as before. We look at two cases, one in which none of the proposed modifications
improve the size properties of the ordinary sieve bootstrap test because it is al-
ready very precise (θ = 0.8) and one in which they all do (θ = −0.8). All these
simulations are based on 5 000 samples with B = 599. Table 3 reports ERP-
adjusted power when the only deterministic component in the ADF regression is
a constant.7

The numbers in table 3 indicate that the power of the MSB1 and MSB2 ADF
tests is similar to, though usually slightly lower than, that of the SB ADF test.
Thus, their lower ERP when θ is close to -1 apparently comes at a very small
power cost. It therefore seems appropriate to say that one should always impose
restrictions such as k′ = max{k′

0−(k′

0−k)i, 0} when carrying out a sieve bootstrap

sample sizes and hold for all conventional nominal levels.
7DGPs with θ = −0.4, 0 and 0.4 were also considered. The results were similar to those

for θ = 0.8. Simulations with n = 50 were also carried out and yielded results similar to
those reported in table 3. Finally, the inclusion of a time trend does not significantly alter
the results.
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ADF test.

Also, according to the tables, the ERP-adjusted power of versions 1 and 3 of
the MFDSB ADF tests are very similar. They both have power comparable to,
yet smaller than, that of the FDSB when θ = 0.8 or -0.8. Thus, the cost of their
important ERP improvement, though more substantial than in the MSB case, still
is acceptable. The MFDSB2 ADF test usualy has lower power than the MFDSB1
and 3. Finally, the MFDSB4 ADF test does not have good power at all.

Table 3. ERP-adjusted power, no time trend.

SB MSB1 MSB2 FDSB MFDSB1 MFDSB2 MFDSB3 MFDSB4
n = 100

ρ = 1 -0.0062 0.0046 0.0042 0.0008 0.0178 0.0243 -0.0174 0.0014
ρ = 0.95 0.1152 0.1020 0.0929 0.1051 0.1056 0.0778 0.1072 0.0986
ρ = 0.90 0.2076 0.1867 0.1432 0.2032 0.1733 0.1191 0.1947 0.1691

θ = 0.8 n = 200

ρ = 1 -0.0036 0.0012 0.0004 0.0000 0.0072 0.0066 -0.0056 -0.0004
ρ = 0.975 0.1383 0.1343 0.1135 0.1348 0.1218 0.1098 0.1313 0.1193
ρ = 0.95 0.2531 0.2278 0.2229 0.2372 0.2168 0.1929 0.2254 0.2110

n = 100

ρ = 1 0.2882 0.2092 0.1306 0.2388 0.1026 0.0005 0.0828 0.0126
ρ = 0.95 0.1204 0.1265 0.1212 0.1103 0.0998 0.1185 0.0981 0.0777
ρ = 0.90 0.1906 0.1968 0.2186 0.1743 0.1287 0.2196 0.1167 0.0589

θ = −0.8 n = 200

ρ = 1 0.2176 0.1808 0.0044 0.1864 0.1100 -0.0402 0.1116 0.0556
ρ = 0.975 0.1303 0.1369 0.1160 0.1463 0.1166 0.09776 0.1174 0.0984
ρ = 0.95 0.2743 0.2651 0.2812 0.2349 0.1849 0.1355 0.1940 0.1220

6 Conclusion

After studying the impact of lag selection on the finite sample performances of the
sieve bootstrap ADF test, we introduce some modifications to the sieve bootstrap
and fast double sieve bootstrap specifically designed to reduce the test’s ERP
under the null. These modifications are based on the theory of Galbraith and
Zinde-Walsh (1999). They consist of restricting the numbers of lags to be included
in the sieve bootstrap DGP and in the ADF regressions in ways that allow the null
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distribution of the bootstrap test statistics to be closer to the true distribution.

In the presence of a MA(1) component, our simulations indicate that the re-
sulting MSB ADF tests have lower ERP than the usual sieve bootstrap test in the
root near-cancellation case and comparable power.8 This unequivocally makes it
a desirable alternative to the usual sieve bootstrap. Further, two versions of the
modified fast double sieve bootstrap tests have much smaller ERPs than the fast
double sieve bootstrap test while retaining accpetable, yet lower, power. Arguably,
their very low ERP, even in extreme cases where the ordinary ADF tests almost
always rejects the true null, more than compensates their lower power.
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