
 1

      

 
 

 
 

 
 

Cahier de Recherche / Working Paper 
10-19 

 
 
 
 
 
 

Kernel smoothing end of sample instability tests P values 
 
 
 

Patrick Richard 
 
 
 
 
 
 
 
 
 
 

 
 

Groupe de Recherche en Économie 
et Développement International 



Kernel smoothing end of sample instability tests P values

Patrick Richard
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Abstract

A Monte Carlo investigation shows that the rejection probability of the structural
stability test of Andrews (2003) depends on several characteristics of the DGP,
one of which is the length of the hypothesized break period. This is analyzed and
found to be caused, at least in part, by the fact that the number of subsampling
statistics used to compute the P value depends on the sample size and the length
of the break period. Simulations show that kernel smoothed P values provide more
accurate tests in small samples.

Keywords: Kernel smoothing; Simulation-based test; P value; Stability test.

JEL codes: C12; C14; C15.

This research was supported by a grant from the Fonds Québécois de Recherche sur la Société et la
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1 Introduction

Testing the null hypothesis of parameter stability is an important issue in econo-
metric modeling. For example, suppose we posses n+m observations of a variable
yt and of a set of k covariates Xt. Then, we may want to test the null hypothesis
that the value of the elements of β is the same throughout the sample, that is, we
may want to test

H0 : β0 = β1

against
H1 : β0 6= β1

in the linear regression model

yt =
{

Xtβ0 + ut, for t = 1, .., n
Xtβ1 + ut, for t = n + 1, ..., n + m

. (1)

Several procedures have been proposed to perform such a test. Usually, their
asymptotic characteristics under the null are derived under the assumptions that
n → ∞ and m → ∞, that is, that both the pre and post break number of
observations increases to infinity (see Andrews, 2003 and the references therein).
This makes them somewhat inappropriate when the break period is thought to be
short or when the break point occurs near the end of the sample.

Tests that only require n → ∞ are developed by Dufour, Ghysels and Hall
(1994) and Andrews (2003). Since these tests are closely related and because
Andrews’ (2003) critical values are much easier to obtain than those of Dufour et
al. (1994), this paper is solely concerned with Andrews’ (2003) test.

Essentially, Andrews’ test is a variant of the well known F test proposed by
Chow (1960). It is however, much more versatile since, in a linear regression when
m is small and fixed, Chow’s test necessitates normally distributed, independent
and homoskedastic error terms to be asymptotically valid, whereas Andrew’s test
only requires stationarity and ergodicity. The S test statistic proposed by Andrews
(2003) is defined as follows.

S = Sn+1(β̂n+m, Σ̂n+m), (2)

where β̂n+m is the OLS estimator of β computed using observations t = 1, .., n+m,

Σ̂n+m =
1

n + 1

n+1
∑

j=1

ûj,j+m−1û
>

j,j+m−1
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ûj,j+m−1 = yj,j+m−1 −Xj,j+m−1 β̂n+m

where Zj,j+m−1 refers to rows t = j, ..., j + m − 1 of the matrix Z. The function
Sn+1() is defined as

Sj(β, Σ) = Aj(β, Σ)>V −1
j (Σ)Aj(β, Σ),

Aj(β, Σ) = X>

j,j+m−1Σ
−1(yj,j+m−1 − Xj,j+m−1β),

Vj(Σ) = X>

j,j+m−1Σ
−1Xj,j+m−1.

This statistic requires that the number of columns in the matrix X be smaller or
equal to the number of post break observations (k ≤ m). When this is not the
case, Andrews proposes a second statistic, called P , defined as

P = Pn+1(β̂n+m, Σ̂n+m), (3)

Pj(β, Σ) = (yj,j+m−1 − Xj,j+m−1β)>Σ−1(yj,j+m−1 − Xj,j+m−1β).

When k ≥ m, S = P . The P statistic can also be computed when k ≤ m but
the simulations reported in Andrews (2003) indicate that the S test has better
properties in these circumstances. Thus in what follows, I only consider the S

test.

The P value of the S test is obtained by a method akin to subsampling. It is
calculated using the empirical distribution function (EDF) of the statistics Sj(β, Σ)
for j = 1, ..., n − m + 1. The logic of this method is evident: under both the null
and the alternative, these statistics Sj are all calculated over subsamples that do
respect the null hypothesis of structural stability. Thus, the EDF of Sj provides a
good estimator of the distribution of S under the null. The S tests can easily be
modified to carry out beginning and middle of sample instability tests. Exactly
how to do this is explained in section 4 of Andrews (2003), to which the interested
reader is referred.

2 Monte Carlo study

This section provides some Monte Carlo results on the S test’s finite sample per-
formances. A more detailed set of results can be found in Richard (2010). The
matrix X is composed of a column of ones and k = 1, 2, 3 or 4 additional regressors
generated from independent stationary AR(1) models with a parameter ρ = 0, 0.4
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or 0.8. The error terms are also generated as an AR process with the same 3 pos-
sible values for ρ. Under the null hypothesis, I have set β0 = β1 = 0. The number
of post break observations considered was 1, 5 or 10. Whereas Andrews (2003)
only considers pre break sample sizes of 100 and 250, I used n = 25, 50, 100 and
250. The results presented in this section are based on 50 000 simulated samples.

The first column of table 1 shows the results of a response surface analysis
wherein the S test’s rejection probability (RP) was regressed on ρ, m and k. I ran
different regressions for different sample sizes to clearly see how the effect of some
of these factors changes as n increases. The effect of the sample size (n) may be in-
directly seen through the constant of these regressions and is, obviously, to decrease
the test’s ERP. This was noted by Andrews (2003, p. 1685) and evidently results
from standard asymptotic convergence arguments. Andrews (2003) also notes that
larger values of ρ yield higher RPs. This feature appears in my simulations but
the greater variety of sample sizes allows to clearly see that the magnitude of this
effect is inversely related to n, as should be expected. The number of regressors,
k, also has an impact on the test’s RP which decreases as n → ∞. Finally, the
number of observations after the break, m, also affects the test’s RP.

Part of the test’s sensitivity to m may be due to the fact that the P value is
calculated with n−m +1 subsampling statistics. Indeed, in order for a simulation
based test carried at a level α to be as precise as possible (and even exact if the
statistic is a pivot), it is necessary that α(M + 1) be an integer, where M is the
number of simulated statistics, see Davidson and MacKinnon (2000).

The curve labeled S sub in figure 1 illustrates this point. It shows the RP of
the S test (evaluated with 1 000 000 simulated samples) as a function of n in a
data generating process (DGP) with k = 1, ρ = 0.4 and m = 5. It is evident that
the RP of the S test is very much influenced by the pair m and n. Notice that the
troughs of the function correspond to samples sizes where α(n−m+2) is an integer
(n = 22, 42, 62, 82 and, eventually, 102). What this means in practice is that the
accuracy of the test does not monotonically increase with n and that adding an
observation may cause the test to have a larger error in rejection probability (ERP).
For instance, in the example presented in figure 1, the test has a RP of 0.0498 with
n = 42 and 0.0653 when n = 45.

A solution to this problem is to compute kernel smoothed P values, that is, P

values computed from a nonparametric estimate of the distribution of the Sj rather
than from their EDF. This was first suggested by Racine and MacKinnon (2007) for
computationnaly intensive bootstrap tests where computational cost may prevent
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a large number of bootstrap replications to be used. Their simulations indicate
that kernel smoothed bootstrap tests with noninteger α(M +1) have smaller ERPs
than unsmoothed ones in small samples.1

An important element of this procedure is the choice of the bandwidth with
which the smoothed P value is to be computed. Commonly used data-based rules
for CDF estimation are hIMSE = 1.587sn−1/3 and hMSE = 1.3sn−1/3, where s is
an estimate of the standard deviation of the subsampling tests statistics. These
choices are, respectively, integrated mean squared error (IMSE) optimal and MSE-
optimal. As noted by Racine and MacKinnon (2007), those selection techniques are
not optimal for smoothed P value computations since they do not take into account
the nominal level of the test performed. Using response surface analysis, they
suggest hR−MacK = 1.575sB−4/9 for tests at 5% nominal level when the underlying
distribution of the test is Gaussian.

Figure 1 plots the RP of the S test when the smoothed P value is computed
using either one of these three methods. Obviously, the smoothed P values are
much less affected by the sample size than the EDF-based ones. Furthermore,
columns 2, 3 and 4 of table 1 provide response surfaces for each method. The
dependence of the RP on m is weaker for the kernel smoothed P values. In
addition, I have computed the root mean square error (RMSE) of the unsmoothed
and smoothed tests RPs, that is, the RMSE of procedure i is defined as

RMSEi =
1

J

J
∑

j=1

(RP i
j − α)2,

where J is the total number of DGPs used. The smoothed P values provide tests
with much smaller RMSE when n = 25 and comparable RMSE in all other sample
sizes.

3 Conclusion

The simulation results presented here indicate that the length of the break period
(m) is one of the factors that affect the RP of the S test proposed by Andrews
(2003). At least part of this appears to be due to the fact that the number of
subsampling statistics used to calculate the P value is a function of m. Kernel

1Their primary objective was to reduce the loss of power associated with simulation tests.

Unreported simulations indicate that smoothed S tests have power similar to unsmoothed
ones.
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smoothing the distribution of the statistics before computing the P value suc-
cessfully removes most of this dependence and yields more accurate RPs in small
samples.
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Table 1. Response surfaces

n = 25

S sub S IMSE S MSE S R-MacK

c 0.0822*** 0.0609*** 0.0636*** 0.0690***

ρ 0.0302*** 0.0252*** 0.0261*** 0.0280***
k -0.0091*** -0.0080*** -0.0082*** -0.0080***
m -0.0044*** -0.0028*** -0.0029*** -0.0033***

R2 0.8075 0.8756 0.8731 0.8525
RP RMSE 0.0238 0.0170 0.0176 0.0192

n = 50

S sub S IMSE S MSE S R-MK

c 0.0585*** 0.0547*** 0.0559*** 0.0570***
ρ 0.0253*** 0.0234*** 0.0238*** 0.0249***

k -0.0049*** -0.0046*** -0.0046*** -0.0043***
m 0.0000 -0.0009*** -0.0008*** -0.0006**

R2 0.7496 0.7697 0.7649 0.7498

RP RMSE 0.0114 0.0111 0.0112 0.0112
n = 100

S sub S IMSE S MSE S R-MK

c 0.0470*** 0.0500*** 0.0506*** 0.0513***

ρ 0.0173*** 0.0173*** 0.0174*** 0.0177***
k -0.0020*** -0.0022*** -0.0021*** -0.0020***

m 0.0004** -0.0002 -0.0002 0.0000

R2 0.7459 0.7208 0.7247 0.7305
RP RMSE 0.0072 0.0073 0.0073 0.0073

n = 250

S sub S IMSE S MSE S R-MK

c 0.0496*** 0.0486*** 0.0490*** 0.0494***
ρ 0.0080*** 0.0079*** 0.0079*** 0.0081***

k -0.0005* -0.0007** -0.0006** -0.0005
m 0.0004*** 0.0001 0.0001 0.0002

R2 0.7607 0.73 0.7284 0.7374
RP RMSE 0.0034 0.0032 0.0032 0.0032

*, ** and *** denote statistical significance at the 10%, 5% and 1% levels respectively according to heteroskedasticity-

robust standard errors.
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Figure 1: Rejection frequency of unsmoothed and smoothed S tests.
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