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Abstract: Two parameters are central to several modern quantitative models of
bilateral international trade flows: the elasticity of substitution in consumption (σ)
and the inverse index of heterogeneity of firms’ productivities (θ). However, structural
parameter estimation applications using the seminal Feenstra econometric methodology
typically focus on estimates of only σ and a bilateral export supply elasticity – which we
will term γ. Separately, modern trade agreements are increasingly “deep,” meaning they
reduce fixed trade costs alongside variable trade costs (such as tariffs). Although Melitz
models of international trade recognize both trade costs theoretically, very little is known
quantitatively about their relative impacts on trade and welfare. In this paper, we offer
three contributions. First, in the spirit of Arkolakis (2010), we extend the canonical
Melitz model of trade to allow for increasing marginal market-penetration costs, alongside
fixed marketing costs, to show theoretically the importance of accounting for increasing
marginal costs (via γ) – in the presence of firm heterogeneity – in understanding the
relative impacts on trade, extensive margins, intensive margins, and welfare of reducing
fixed trade costs and variable trade costs. Second, we provide a microeconomic foundation
for estimating all three parameters using the Feenstra econometric methodology alongside
a gravity equation. Third, we demonstrate the importance of increasing marginal costs
using two counterfactual exercises. One illustrative quantitative implication for U.S.
trade policy is that, under (empirically rejected) constant marginal costs, fixed trade
costs would have to be reduced by 57 percent for a welfare-equivalent reduction in
variable trade costs of 3 percent; by contrast, under (empirically supported) increasing
marginal costs, fixed trade costs would have to be reduced by only 14 percent.
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1 Introduction

Central to the post-2000 modern quantitative models of international trade are two parame-

ters. The first – and arguably most visible – is the elasticity of substitution in consumption

among differentiated products, σ. This parameter is key in the seminal theoretical founda-

tion for the gravity equation with Armington preferences in Anderson (1979), monopolistic

competition model of intra-industry trade with Dixit-Stiglitz preferences in Krugman (1980),

analysis of optimal tariffs in Broda et al. (2008) and Ossa (2016), and a vast array of

applied computable general equilibrium (CGE) models used for trade-policy analyses, cf.,

U.S. International Trade Commission (2019). The second parameter, which surfaced over

the last 20 years, is a (inverse) measure of heterogeneity of firms’ productivities, which we

denote θ. Motivated by theoretical models of Eaton and Kortum (2002) and Melitz (2003),

θ is the key parameter in modern quantitative trade models with heterogeneous firms for

capturing the infamous “trade elasticity” (i.e., elasticity of bilateral trade with respect to ad

valorem bilateral variable trade costs), one of two sufficient statistics to measure welfare

effects of trade liberalizations in a broad set of quantitative trade models (cf., Arkolakis

et al. (2012), henceforth, ACR).

A common assumption to these quantitative trade models is constant marginal costs.

By contrast, the most widely respected structural method for estimating σ – introduced by

Feenstra (1994) and further developed by Broda and Weinstein (2006) (henceforth, F/BW)

and Broda et al. (2008) – assumes bilateral export supply prices are positive functions of

the level of exports to foreign markets, which implies increasing marginal costs of exporting

to each destination market. We will refer to the parameter that governs the bilateral export

supply elasticity as γ. Although σ and θ currently play central roles in trade theory and

calibration exercises of new quantitative trade models, γ has been largely ignored. Moreover,

the bilateral export supply elasticity has typically been incorporated in these econometric

analyses in an ad hoc manner. For instance, in Feenstra (1994), Broda and Weinstein (2006),

and Soderbery (2015, 2018), positively-sloped bilateral export supply curves were simply

assumed. More recently, Feenstra et al. (2018) extend the method of Feenstra (1994) allowing

firm heterogeneity based upon a standard Melitz model with constant marginal costs, but

still introduce an equation that “plays the role of a supply curve” (p. 140).

Separately, modern international trade agreements – such as free trade agreements

(FTAs) – are increasingly “deep,” meaning that, beyond the typical reductions in ad valorem

tariff rates found in “shallow” agreements, they reduce fixed trade costs. The World Bank

has recently compiled a large data set on deep trade agreements’ (DTAs) provisions. The

database, summarized comprehensively in Hofmann et al. (2017), documents the extensive

growth in DTAs over the past twenty years. A notable economic difference concerning
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these deep provisions is that they relate to regulatory convergences and administrative

liberalizations that are unrelated to the quantity of goods exported and are more readily

interpreted as reducing fixed trade costs. For instance, the most popular non-tariff measures

included in modern trade agreements are customs administration (often referred to as trade

facilitation measures), competition policy, sanitary and photosanitary (SPS) regulations,

and technical barriers to trade (TBT) regulations.

Recent empirical work using gravity equations indicates economically and statistically

significant effects of indexes of DTAs’ provisions on trade flows, cf., Kohl et al. (2016), Baier

and Regmi (2020), Crowley et al. (2020), Breinlich et al. (2021) and Fontagne et al. (2022).

By contrast, there has been a dearth in numerical analyses of variable versus fixed bilateral

trade costs in either standard CGE models (such as GTAP) or in the new quantitative

trade models. Zhai (2008) is one of the earliest – and rare – studies to introduce a standard

Melitz model (with constant marginal costs) into a global CGE model of world trade and to

contrast the trade and welfare effects of a 5 percent variable trade-cost reduction relative

to a 50 percent fixed trade-cost reduction.1 In Zhai (2008), it would take a 29 percent

reduction in bilateral fixed trade costs to achieve the equivalent gain in welfare as a 4 percent

reduction in ad valorem variable trade costs (a ratio of 7.25:1). More recently, however,

Arkolakis et al. (2021) extend the canonical Melitz model of trade to allow multiproduct firms

facing constant marginal costs in core-product production, but allowing increasing marginal

market-penetration costs and increasing marginal costs in non-core products. Among several

findings, one counterfactual implies that it would take a 13 percent reduction in fixed trade

costs with countries to generate the same welfare gain as a 4 percentage point reduction in

tariff rates (or a ratio of 3.25:1). Such estimates suggest evaluating the role of increasing

versus constant marginal costs to address the question: Why have countries increasingly

pursued deep trade agreements?

Given these considerations, we now summarize our paper’s contributions. Our first

contribution, motivated by Arkolakis (2010), is to introduce increasing marginal costs (IMC)

into the Melitz model via an empirically-tractable formulation of increasing marginal market-

penetration costs. To get a sense of the impact of IMC on the trade elasticity, consider a

simple Armington trade model. Figure 1 illustrates the attenuation of the intensive margin

elasticity in the presence of a positively-sloped bilateral export supply curve, consistent

with IMC. In the standard case of constant marginal costs (CMC), a one percent increase

in ad valorem variable trade costs, ∆ ln τij = AD, lowers bilateral imports from country

i to country j (IMij) by ∆ ln IMij = (1 − σ)∆ ln τij = AB, where σ is the elasticity of

substitution in consumption. However, with IMC, the same one percent increase in ad

valorem variable trade costs lowers bilateral imports by less, ∆ ln IMij = AC < AB. Figure

1We will discuss Balistreri et al. (2011) and Dixon et al. (2016) below in section 6.
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1 clearly illustrates that under CMC the trade elasticity is a function solely of the elasticity

of substitution, whereas under IMC the trade elasticity also depends on an index of the

shape of the supply curve.

D
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B
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lnIM$%
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IMC) IMC*

IM$%

Figure 1: Increasing Marginal Costs vs. Constant Marginal Costs

Our extended model yields several analytical results. First, we derive a gravity equation

similar to that in ACR except that the extensive margin elasticity and the trade elasticity

with respect to (ad valorem) variable trade costs are magnified; yet, the variable trade-cost

intensive margin elasticity is diminished, consistent with Figure 1. An implication is that

variable trade-cost liberalizations with IMC will have more firm entry and exit and more

labor reallocations than under CMC. Second, the fixed trade-cost trade elasticity – which is

a function of the variable trade-cost extensive margin elasticity relative to the variable trade-

cost intensive margin elasticity – is magnified under IMC. Moreover, a further implication

of IMC is that the fixed trade-cost trade elasticity is magnified relative to the variable

trade-cost trade elasticity, which will be important in understanding the welfare-equivalent

impacts of fixed trade-cost liberalizations relative to variable trade-cost liberalizations in

deep FTAs. Third, allowing IMC diminishes the welfare effect of a given change in the

domestic trade share (for a given θ). The intuition is that real wage gains from a trade

liberalization can be traced to changes in average productivity. In the Melitz model, changes

in average productivity are proportionate to changes in output of the zero-cutoff-profit (ZCP)

productivity firm. In the CMC case, the latter are directly proportionate to productivity

changes of the ZCP firm. However, with increasing marginal costs (γ <∞), output of the

ZCP firm rises less than proportionately to the change in the ZCP firm’s productivity. The

gains to average productivity are diminished at a rate of 1 + 1/γ.
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Our second contribution is to further develop the microeconomic foundation for the F/BW

econometric approach to estimate σ and γ by accounting explicitly for firm heterogeneity.

Unlike F/BW, our approach distinctly recognizes the importance of differences in the masses

of exporting firms, which depend on the exporting country’s labor-force size and the zero-

cutoff-profit productivity threshold. In the context of the heterogeneous-firm models, one

must account for both new import varieties from trade liberalizations as well as declining

numbers of domestic varieties. The F/BW reduced-form estimating equation includes two

variables and one interaction term. Our extension of the F/BW approach to account for firm

heterogeneity motivates the inclusion potentially of 6 additional variables, for a total of 8

variables and 28 interaction terms. While we can show all 35 (right-hand-side) coefficients are

functions of the three structural parameters only, the large number of nonlinear constraints

precludes estimation of σ, γ, and θ simultaneously. Instead, we pursue a two-pronged approach,

composed of two reduced-form estimating equations. In the first part of our estimation, we

implement our extension of the F/BW reduced-form equation that allows us to estimate

σ and γ while controlling explicitly for firm heterogeneity. In the second part, we use the

gravity equation generated from our theoretical model to identify θ using the trade elasticity

alongside the first part’s estimate of γ. Our novel estimation approach yields median estimates

across the distribution of industries of σ and γ of 6.45 and 6.00, respectively – approximately

35 and 50 percent larger, respectively, than the comparable F/BW estimates ignoring firm

heterogeneity. Moreover, our median estimate of θ from the second step is 8.50 – which is

very close to Eaton and Kortum (2002)’s and Arkolakis (2010)’s preferred estimate of 8.28.

Our third contribution is to illustrate the impact of recognizing increasing marginal costs

on the estimated effects of DTAs in the world. Goldberg and Pavcnik (2016) emphasized

that economists have not paid sufficient attention to the study of the effects of trade-policy

changes other than ad valorem tariff-rate changes, and that a better understanding of the

effects of reduced fixed trade costs on international trade and economic welfare is critical. In

this spirit, we conduct two numerical analyses. In the first exercise, we show that – even

under IMC – the welfare gains from trade for an economy can be captured by a function

of an economy’s current intra-national trade share and the trade elasticity. This result is

fully consistent with the main conclusion in ACR that the trade elasticity (independent

of its structural interpretation) and the intra-national trade share are sufficient statistics

to measure the welfare effect of a change in bilateral variable or fixed trade costs (τij

or fij , respectively). However, in the presence of IMC, the trade elasticity is higher (in

absolute terms) and consequently the welfare gains lower, owing to a “welfare diminution

effect” attributable to diminishing marginal returns. In a second exercise, we examine the

relative impacts of variable trade-cost changes and fixed trade-cost changes. We show that,

for typical values of σ and θ, under CMC (γ = ∞) the degree of liberalization of fixed
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trade costs needed to generate an equivalent increase in welfare is very large relative to

the degree of liberalization of variable trade costs, questioning the increasing effort toward

deep trade agreements. By contrast, under increasing marginal costs (γ <∞), the degree

of liberalization of fixed trade costs needed to generate an equivalent increase in welfare is

dramatically reduced relative to the degree of liberalization of variable trade costs, which

helps explain the attractiveness of deep trade agreements. For instance, we show for the

United States that, under CMC, fixed trade costs would have to be reduced by 57 percent

to provide the same increase in welfare as a reduction in variable trade costs of 3 percent.

By contrast, under the empirically supported assumption of IMC, it would take only a 14

percent reduction in fixed trade costs to increase U.S. welfare by the same respective variable

trade-cost reduction.

The remainder of this paper is as follows. In section 2, we introduce and solve our Melitz

model allowing increasing marginal costs, asymmetric countries, and a Pareto distribution

of productivities. In section 3, we solve for our gravity equation and trade elasticity, derive

the variable- and fixed-trade-cost elasticities of extensive and (for variable trade costs)

intensive margins, discuss welfare implications, and provide the intuition behind our “welfare

diminution effect.” In section 4, we discuss our econometric methodology, empirical specifi-

cations, and data sources. In section 5, we provide estimates of σ, γ, θ, and the variable-

and fixed-trade-cost trade elasticities. In section 6, we provide numerical estimates of a

counterfactual analysis of the impact of introducing increasing marginal costs on the welfare

effects from trade and another counterfactual analysis demonstrating the importance of

recognizing empirically-justified increasing marginal costs toward evaluating the quantitative

welfare significance of liberalizations of fixed trade costs relative to those of variable trade

costs, two components of (modern) deep trade agreements. In section 7, we offer some

conclusions.

2 Theory

Our theoretical framework builds on the Melitz (2003) heterogeneous firms model. As in

Chaney (2008) and Redding (2011), we allow for differences in countries’ labor endowments

and bilateral trade barriers and we assume a Pareto distribution for productivity draws. The

Pareto distribution is particularly useful because it yields closed-form solutions that we can

use to obtain clear theoretical predictions and to develop our novel econometric approach

for the estimation. A key difference with the Melitz (2003) model is that our framework

features an empirically tractable adaptation of the increasing marginal market-penetration

cost aspect of Arkolakis (2010) to allow for the possibility of increasing marginal costs of

providing output to any market. It seems reasonable to study the more general version of
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the model – especially one that motivates the econometrically tractable structural bilateral

import demand and bilateral export supply functions in F/BW – and let the data determine

the slope of the bilateral export supply curve, instead of imposing CMC ex ante.

2.1 Consumer Behavior

Our modeling of consumer behavior is standard. We assume a world with j = 1, 2, ..., N

countries. In each country, there is a mass of consumers, Lj , each endowed with one unit of

labor (or a composite input we call “labor”). The preferences of the representative consumer

in country j are a constant-elasticity-of-substitution (CES) function of the consumption of a

continuum of differentiated varieties:

Uj =

[
N∑
i=1

∫
ν∈Ωij

b
1−σ
σ

i cij(ν)
σ−1
σ dν

] σ
σ−1

, (1)

where cij(ν) is the quantity consumed of variety ν from country i, Ωij is the (endogenous)

mass of varieties produced in country i and available for consumption in country j, bi > 0 is

an exogenous (inverse) preference parameter for country i’s varieties (c.f., Anderson and van

Wincoop (2003)) and σ > 1 is the elasticity of substitution between varieties.

The representative consumer maximizes utility subject to the standard income constraint,

such that the optimal aggregate demand function for each variety is given by:

cij(ν) = EjP
σ−1
j b1−σi pcij(ν)−σ, (2)

where Ej denotes aggregate expenditures in country j, pcij(ν) is the price of a unit of variety

ν from country i facing the consumer in country j, and Pj defined as:

Pj =

[
N∑
i=1

∫
ν∈Ωij

b1−σi pcij(ν)1−σdν

] 1
1−σ

(3)

is the price index dual to the consumption index Cj ≡ Uj . Because consumers have no taste

for leisure, they always supply their unit of labor to the market at the prevailing wage rate,

wj . Hence, the equilibrium labor supply is Lj .

2.2 Cost Function

The F/BW approach assumes upward-sloping bilateral export supply curves to estimate

bilateral import demand elasticities (σ) for various industries. Starting with Feenstra (1994),

the bilateral supply curve for j’s imports from country i was specified as pij = qωijξij ,

where qij is the quantity produced in i and exported to j, and ξij was assumed to be a
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random (technology) factor (cf., his equation (8)).2 More than twenty years later, Soderbery

(2018) also assumed the same positively sloped export supply curve stating “an upward

sloping constant elasticity (bilateral) export supply curve of this nature was championed by

Feenstra (1994), and has become standard with Broda and Weinstein (2006) and Broda et al.

(2008) for structurally estimating (bilateral) import demand and export supply elasticities.

Additionally, recent deviations from Feenstra (1994) by Feenstra and Weinstein (2017) and

Hottman et al. (2016) model a tighter link between exporter cost functions and export

supply, but effectively assume that (bilateral) export supply is isoelastic and upward sloping”

(p. 47). The “tighter link” that Soderbery (2018) refers to is Feenstra and Weinstein (2017)

specifying that “marginal costs from each exporting country” to an importing country are

an exponential function mcij = ωij0q
ω
ij , where ωij0 is an undefined term.3

We note two issues in the extant literature. First, because the studies cited focus on

demand considerations, they do not provide a micro-foundation for the supply-side of the

model. Second, these studies ignore the heterogeneity in firms’ productivities that is now

well documented. In this paper, we address both of these issues by extending the Melitz

trade model to allow for fixed and variable marketing costs in the spirit of Arkolakis (2010),

adapted to an empirically tractable framework.4 The core idea put forward in Arkolakis

(2010) is that “firms reach individual consumers rather than the market in its entirety” (p.

1152). Arkolakis (2010) introduced a variable cost component to the fixed export (marketing)

component that yielded that only the most productive firms would enter a foreign market

(selling to the “first consumer”), but to reach additional consumers (i.e., marginal market

penetration) the firm faced “increasing marginal penetration costs” (p. 1151; italics added).

The model in Arkolakis (2010) provides a rich extension of the Melitz model that matches

empirical regularities in the data, such as the observation in Eaton et al. (2011) that the

typical destination market for exporters has a large number of smaller firms. Specifically,

Eaton et al. (2011) note that the size distribution of exporters within each destination market

exhibits a Pareto distribution for relatively larger exporters, but they also note deviations

from the Pareto distribution for a large proportion of French exporters in each market selling

small amounts. Moreover, the rationale for introducing marginal marketing costs is supported

empirically. As noted in Arkolakis (2010), Bagwell (2007) reviewed the literature on the

economics of advertising and notes that most studies found that advertising’s effectiveness

2We have modified his notation to be consistent with that of the current paper.
3Once again, we have modified notation in Feenstra and Weinstein (2017) to be consistent with that of

the current paper; see that paper’s equation (23) on page 1059. Also, Fajgelbaum et al. (2020) asume the
same bilateral increasing marginal cost function.

4 For simplicity here, we assume a single industry as in Melitz (2003). As common to the literature, we
could instead have multiple industries with Cobb-Douglas preferences. Nevertheless, our estimation method
recognizes that the structural parameters vary across industries.
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is subject to diminishing returns.5

For our purposes, the specific features of the model in Arkolakis (2010) are constraining.

First, by introducing variable marketing costs via the export fixed cost term, the model in

Arkolakis (2010) yields a pricing function where price is a function of constant marginal costs,

independent of destination output and consequently inconsistent with the typical F/BW

positively sloped supply curve. Second, as Anderson (2011) pointed out, the marketing

element in Arkolakis (2010) effectively has a “fixed-cost component and a variable-cost

component subject to diminishing returns” (p. 140; italics added). Third, one of the benefits

of Arkolakis embedding the variable cost marketing component inside export fixed costs is

that – for his calibrations – he avoids having to specify “as many [export] fixed costs as

destinations” (p. 1164). However, as Anderson (2011) noted, the introduction of numerous

additional parameters is useful for his simulations, but “is not econometrically tractable” (p.

140). Consequently, we introduce in our model a simple explicit variable marketing cost in

the production function, similar in spirit to iceberg transport costs, that captures increasing

marginal market-penetration costs in an econometrically tractable manner consistent with

the F/BW approach.

Let mij denote an ad valorem factor representing the additional output that must

be produced by firms in country i to cover variable marketing costs of “marginal market

penetration” from selling in country j, like iceberg trade costs. Hence, variable marketing costs

are a function of the quantity sold within the destination market, mij(qij). However, unlike

iceberg trade costs, variable marketing costs are an exponential function mij(qij) = q
1/γ
ij

where 0 < γ < ∞ (and hence 0 < 1/γ < 1), capturing that previous empirical studies

noted above suggest that marketing expenditures exhibit diminishing returns to reach

more consumers within market j.6 Having defined all the components of costs, we can now

introduce the cost function. Production uses only one input, labor. The labor required by a

country-i firm with productivity ϕ to produce qij units of output for sale to country j is

given by:

lij(ϕ) =
1

Ai

(
fij +

mij(qij)qij
ϕ

)
=

1

Ai

(
fij +

qij(ϕ)
1+ 1

γ

ϕ

)
(4)

where Ai > 0 is incorporated as an exogenous parameter which captures the productivity

of workers in the entire country.7 As implied by equation (4), the fixed costs component

5Arkolakis (2010) also notes several other studies supporting that advertising expenditures are subject to
diminishing returns, cf., Simonovska and Waugh (1980), Saunders (1987), Sutton (1991), and Jones (1995).

6See Flach and Unger (2022), equation (5), for a similar formulation in the context of a model with
quality differentiation.

7Countries with more productive workers (i.e., with higher Ai) require fewer workers, all else equal, to
produce a given quantity of output or cover fixed costs. The special case of i = j represents the demand for
labor for domestic sales. As standard to this literature, for the domestic market, the fixed costs fii capture
the costs of setting up a production facility, as well as advertising and domestic distribution costs. For foreign
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(fij) is common across firms for a given origin-destination pair, whereas marginal costs vary

across firms for two reasons.8 First, as conventional to a Melitz model, more productive firms

(i.e., with higher ϕ) need fewer workers to produce a given level of firm output.9 Second,

marginal costs are a function of destination output such that, all else equal, larger firms face

higher marginal costs to reach more consumers in a market. The parameter γ determines the

marginal cost elasticity of output. For any value of γ ∈ (0,∞), marginal costs are increasing.

When γ goes to infinity, we obtain the constant marginal cost function in most workhorse

trade models.10

As common in this literature, sales to foreign consumers are subject to iceberg trade

costs. Firms in country i must ship τij ≥ 1 units of output to sell one unit in destination j.

As typical, we assume τij > 1 for all i 6= j and τii = 1 for all i. As in Feenstra (2010), we let

pij(ϕ) and qij(ϕ) denote the factory gate price and quantity shipped. Since a firm in country

i producing for and selling to market j incurs ad valorem iceberg costs τij , only cij = qij/τij

arrives at destination j. Moreover, drawing upon section 2.1, it follows that, for consumers

in j, the unit price will be pcij = τijpij .

2.3 Firm Behavior

Firms make two decisions for each potential market (including the domestic market). First,

they must decide whether or not to enter the market. Second, for each market they enter,

they must choose the sale price of a unit of output (or, equivalently, the quantity of output

to sell). We look at each decision, beginning with the pricing one.

Firm profits in each market are given by revenues less labor costs:

πij(ϕ) = rij(ϕ)− wilij(ϕ) = pij(ϕ)qij(ϕ)− wi
Ai

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
, (5)

markets (i 6= j), the fixed costs fij represent only the additional fixed costs of selling to the foreign market
(such costs associated with advertising, distribution, and conforming to foreign regulations).

8In our model, we follow Bernard et al. (2011) in assuming that, for export fixed costs, domestic labor is
employed. However, it is straightforward to consider instead the cases where labor in the foreign market is
used as in Redding (2011) or labor from both countries is used as in ACR’s equation (23). Naturally, this
would have the associated implications for our results as discussed in ACR.

9We model higher productivity as producing a symmetric variety at lower marginal cost. However, higher
productivity may also be thought of as producing a higher quality variety at equal cost. As noted in Melitz
(2003), given the form of product differentiation, the modeling of either type of productivity difference is
isomorphic.

10The cost function assumed here allows closed-form analytical solutions in a world with asymmetrically-
sized countries and asymmetric bilateral trade costs. It is also feasible to follow instead Vannoorenberghe
(2012) in a special case of symmetric country sizes and bilateral trade costs where marginal costs are simply
increasing in total firm output; hence, Vannoorenberghe (2012) was the first to introduce increasing marginal
costs in total firm output in a Melitz framework. We solve this case in Online Appendix C, noting that –
with a large number of countries – the trade, extensive-margin, and intensive-margin elasticities are identical.
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where the second equality uses cost function (4). Because each firm produces only one of a

continuum of varieties, its pricing decision has no impact on the price index in the destination

market (Pj). In other words, the structure of the model eliminates strategic interactions

between firms. Firm profit maximization yields the following optimal (factory-gate) pricing

rule:11

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wiqij(ϕ)

1
γ

Aiϕ
. (6)

We note that all country-i firms with productivity ϕ will charge the same price in destination

j, such that the price of varieties can be identified by an origin country and a firm productivity,

pj(ν) = pij(ϕ).

Pricing rule (6) differs from standard Melitz models in two respects. First, the markup

is no longer a function of only the elasticity of substitution (σ), but also depends on the

inverse marginal cost elasticity of output (γ). As a result, conditional on the distribution of

firm productivities, prices will be higher by a factor of 1 + 1/γ under IMC. Second, prices are

an increasing function of quantity; this provides a rationale for the upward-sloping bilateral

export supply functions in F/BW. We note that, when γ goes to infinity, the first term of

the pricing rule converges to 1 and quantity vanishes from the equation such that we obtain

the CMC pricing rule typical to a standard Melitz model and most workhorse trade models.

Next, we consider the decision to enter a market or not. As a first step, we compute firm

profits. We can use pricing rule (6) to express firm profits, defined in equation (5), as:

πij(ϕ) =

(
σ + γ

1 + γ

)
rij(ϕ)

σ
− wi
Ai
fij (7)

where rij(ϕ) is the firm’s optimal revenue. This result is analogous to a standard Melitz

model with the exception of the first term (σ + γ)/(1 + γ), which exceeds unity because

σ > 1. Our model implies that profits are higher when marginal costs are increasing in

output (i.e., 1/γ > 0). Again, when γ goes to infinity, the benchmark result obtains.

We can combine the zero-cutoff-profit (ZCP) condition πij(ϕ
∗
ij) = 0, the optimal pricing

equation (6), and profits equation (7) to solve for the output and the productivity of the

ZCP firm as follows:

qij(ϕ
∗
ij) =

[
γ

σ + γ
(σ − 1)fijϕ

∗
ij

] γ
1+γ

, (8)

where ϕ∗ij is the productivity level of the ZCP firm and:

(ϕ∗ij)
−θ =


(

1+γ
γ

σ
σ−1

wi
Ai

)σ
b1−σi EjP

σ−1
j


−θ

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] −θ 1+γγ
1+γ
σ+γ (σ−1)

τ
−θ 1+γ

γ

ij . (9)

11Detailed derivations are available in sections 1 and 2 of Online Appendix A.
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Because γ/(σ+γ) and γ/(1+γ) in equation (8) are both positive and smaller than one, for a

given ϕ∗ij the level of output qij(ϕ
∗
ij) is smaller than in the CMC case. Equation (9) provides

an explicit link between ad valorem variable trade costs (τij) and a country-pair’s export

cutoff productivity (ϕ∗ij).
12 Under CMC (i.e., γ =∞), these two variables are proportionate.

However, under IMC, a one percent change in τij has a more-than-proportionate effect on

ϕ∗ij . We will show later that this implies the trade elasticity is larger under IMC relative to

CMC. Finally, we note that when γ →∞, equations (8) and (9) simplify to the standard

result in the benchmark CMC case.

Revenue is increasing in firm productivity, so that profits are also increasing in firm

productivity. As a result, firms in country i with productivity above the productivity cutoff

ϕ∗ij will enter market j, while those with productivity below the cutoff will not. Furthermore,

equation (9) implies that the ratio of export and domestic cutoff productivities is:

ϕ∗ij
ϕ∗ii

=

EiP
σ−1
i f

1+γ
σ+γ

ij

EjP
σ−1
j f

1+γ
σ+γ

ii


1

σ−1

(
1+γ
γ

)
τ

1+γ
γ

ij ≡ Γij ⇒ ϕ∗ij = Γijϕ
∗
ii. (10)

As in Bernard et al. (2011), we assume that Γij > 1, ∀ i 6= j (see page 1284). In that case,

only the most productive firms export, while intermediate productivity firms serve only the

domestic market and the low productivity firms exit. The assumption that there are no

“pure exporters” is consistent with the empirical literature on firms in international trade.13

2.4 Trade Flows

We can now characterize equilibrium aggregate trade flows.14 Imposing the labor-market-

clearing condition and assuming a Pareto distribution for firms’ productivities, we can solve

for the mass of incumbent firms in each country i that sell to each destination j:

Mij =

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi
δθfe

(ϕ∗ij)
−θ. (11)

In the case of γ =∞, Mij simplifies to the respective term in a standard Melitz model with

Pareto distribution. Next, using pricing rule (6) and mass of firms equation (11), we can

express bilateral trade flows as:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
wiLifij
δfe

(ϕ∗ij)
−θ. (12)

12Detailed derivations are available in section 3 of Online Appendix A.
13The findings in Lu (2010) to the contrary are explained in Dai et al. (2016) as processing trade.
14Derivation details are provided in sections 4–8 of Online Appendix A.
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We use the goods-market-clearing condition, Ri = Ei, to express trade flows as a gravity

equation. Substituting equation (12) into expenditure function Ej =
∑N

k=1Xkj , using the

definition of the productivity threshold in equation (9), and solving yields the following

gravity equation:

Xij =

 A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

wjLj . (13)

We note that when γ →∞ the benchmark result obtains.15, 16

2.5 General Equilibrium

In section 9 of Online Appendix A, we develop the dynamic aspect of the model and show

that it is possible to define a set of free entry conditions that depend only on parameters

and the productivity cutoffs. These conditions serve to identify equilibrium values for the

productivity thresholds. As explained in section 10 of Online Appendix A, we can determine

the general equilibrium using the recursive structure of the model as in Bernard et al. (2011).

3 Implications

In this section, we provide several theoretical implications from the model. In section 3.1, we

derive novel ad valorem variable trade-cost and fixed trade-cost trade elasticities under IMC.

With IMC, the variable trade-cost trade elasticity changes relative to the fixed trade-cost

trade elasticity (relative to CMC), which has implications for estimating the relative welfare

benefits of fixed trade-cost liberalizations relative to variable trade-cost liberalizations within

deep trade agreements. In section 3.2, we show that under IMC the welfare effect of a change

in trade costs is still measured by the change in the domestic trade share raised to the

(negative of the) inverse of the (variable trade-cost) trade elasticity, as in ACR. However,

the welfare effect is diminished for a given domestic trade share; we explain the source of

this “welfare diminution effect.”

15Note that the wage-rate elasticity is equivalent to that in Bernard et al. (2011) if one assumes γ =∞, as
we have followed their assumption of export fixed costs using the exporter’s (i’s) labor. By contrast, Redding
(2011) assumes export fixed costs use the importer’s (j’s) labor. ACR’s equation (23) allows either of those
two cases; our setting is analogous to ACR in their case of µ = 1. In the case of γ = ∞ and µ = 1, our
wage-rate elasticity is equivalent mathematically to ACR’s.

16As shown in section 11 of Online Appendix A, equation (13) and the associated variable- and fixed-trade-
cost trade elasticities are consistent also with a “structural gravity ” representation that is common in the
literature. As a result, the method developed in Head and Mayer (2014) to estimate the general equilibrium
trade impacts (GETI) of changes in trade barriers remains applicable for us.
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3.1 Trade Elasticities

As shown in section 12 of Online Appendix A, the (positively defined) ad valorem variable

trade-cost trade elasticity (ετ ) is:

ετ ≡ −
∂Xij

∂τij

τij
Xij

= −

−θ
(

1 + γ

γ

)
︸ ︷︷ ︸

extensive

+
1 + γ

σ + γ
(1− σ)︸ ︷︷ ︸

intensive

+
1 + γ

σ + γ
(σ − 1)︸ ︷︷ ︸

compositional

 = θ

(
1 + γ

γ

)
. (14)

Following Head and Mayer (2014), we decompose this trade elasticity into extensive margin,

intensive margin, and compositional margin components.17 The extensive- and intensive-

margin components have the usual interpretations. The extensive margin elasticity is caused

by changes in the mass of firms serving each market. The intensive margin elasticity is

caused by changes in firm-level exports.18 The compositional-margin elasticity is caused

by the fact that new entrants or exitors do not have the same productivity as the existing

exporters. This margin is a function of the difference between the average shipment of the

incumbent firms (Xij/Mij) and that of the marginal firm. All three components converge to

the benchmark Melitz model values as γ →∞.

In line with previous results for Melitz models, the trade elasticity is determined entirely

by the extensive margin elasticity. At the intensive margin, lower ad valorem trade costs

increase exports of a given firm to a given country, which raise average exports per firm. At

the compositional margin, lower ad valorem trade costs induce low productivity firms to

enter the export market, which lowers average exports per firm. With a Pareto productivity

distribution, the intensive margin and compositional margin elasticities offset one another

exactly.

Under IMC, the elasticity of trade with respect to ad valorem trade costs, ετ , depends

on θ, as in the benchmark, but is scaled up by the additional term 1+γ
γ . Whenever γ <∞,

the trade elasticity is magnified relative to the benchmark (γ →∞). The intuition can be

traced back to equations (9) and (11). Equation (9) reveals that, with IMC, a fall in τij has

a magnified effect of 1+γ
γ on lowering the country-pair’s export cutoff productivity. In light

of equation (11), this lower export productivity threshold makes it profitable for more firms

to export from i to j and hence Mij increases, enlarging the aggregate trade flow from i

17We note that this decomposition nests other decompositions proposed in the literature. First, in the
decomposition of Redding (2011), the intensive and compositional margins are lumped together and labeled
as the “intensive margin.” It also nests the decomposition proposed by Chaney (2008), which is obtained by
taking the sum of the extensive and the compositional margins and calling it the “extensive margin.”

18The intensive-margin elasticity here is consistent with that in a special case of Bergstrand (1985) with
homogeneous firms. We address this in Online Appendix B.
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to j. Due to diminishing marginal returns, the trade elasticity is augmented and is now a

nonlinear function of the two supply-side parameters, θ and γ.

As shown in section 13 of Online Appendix A, we can also decompose the (positively

defined) elasticity of trade with respect to fixed trade costs (εf ) into three margins:

εf ≡ −
∂Xij

∂fij

fij
Xij

= −

−
θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)︸ ︷︷ ︸
extensive

+ 0︸︷︷︸
intensive

+ 1︸︷︷︸
compositional

 =
θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)

− 1. (15)

All components converge to the benchmark values as γ → ∞. The fixed trade-cost trade

elasticity is also scaled up compared to the CMC case where εf = θ/(σ − 1) − 1.19 An

explanation for the different elasticity under IMC also can be traced intuitively back to

equations (9) and (11). Using equation (9), with increasing marginal costs a fall in fij has

a magnified effect on lowering the country-pair’s export cutoff productivity relative to the

case of CMC. In the IMC case, the scaling up of the numerator by 1+γ
γ and scaling down

of the denominator of this elasticity by 1+γ
σ+γ augments the reduction in the country-pair’s

export productivity cutoff. Using equation (11), this lower export productivity threshold

makes it profitable for more firms to export from i to j and hence Mij increases, enlarging

the aggregate trade flow from i to j.20

So far we have shown that, for given values of the structural parameters, the elasticities of

trade are magnified under IMC. As a result, any trade-policy liberalization or transport-cost

reduction that lowers bilateral ad valorem variable trade costs or fixed trade costs will have

a larger impact on trade flows and consequently on the domestic expenditure share than in

the CMC case. Moreover, equations (14) and (15) reveal not only that IMC increases both

elasticities in absolute terms, but also the fixed trade-cost trade elasticity increases relative

to the variable trade-cost trade elasticity. To understand why fixed trade-cost reductions

have a relatively larger effect on trade than variable trade-cost reductions with IMC, consider

19In the CMC case, the assumption that θ
σ−1

> 1 is necessary to solve the Melitz model. However, some
empirical researchers have found evidence that estimates of θ are often below estimates of σ − 1, violating a
necessary assumption of this model, cf., Feenstra (2016), page 168. Our results in equation (15) shed light on
this finding. Our Melitz model under IMC requires only that θ > γ

σ+γ
(σ− 1). Hence, θ can be less than σ− 1

as long as θ exceeds γ
σ+γ

(σ − 1), where 0 < γ
σ+γ

< 1.
20In Online Appendix C, we solved the model for the case of increasing marginal costs in total firm output

(instead of destination-specific output). In the case of marginal costs depending on total firm output, we
must assume symmetric countries and symmetric trade costs to obtain closed-form solutions. Since overall
output is endogenous to the set of countries to which firms export, one cannot solve the model analytically
with asymmetric country sizes and asymmetric trade costs. Yet, in the symmetric world, we can solve for
analogous trade elasticities. In fact, in Online Appendix C, we show that – when the number of countries is
large – the variable-trade-cost trade elasticity and the fixed-trade-cost trade elasticity are identical to those
in equations (14) and (15), respectively.
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equations (8) and (9). The variable trade-cost trade elasticity in a Melitz model is determined

by extensive margin effects solely; consistent with these equations, lower τij increases trade

exclusively by increasing the mass of firms exporting from i to j (as under Pareto, the

intensive margin effect is offset perfectly by the compositional margin effect). Due to IMC,

the trade elasticity scales up θ by 1+γ
γ due to diminishing marginal returns, cf., equation (9).

By contrast, the fixed trade-cost trade elasticity is determined by the ratio of the extensive

margin elasticity to the intensive margin elasticity. Recall, under CMC, reductions in τij

change ϕ∗ij proportionately; however, reductions in fij change ϕ∗ij less than proportionately

(i.e., ϕ∗ij is proportionate to f
1/(σ−1)
ij in equation (8)). The introduction of IMC causes both

the variable trade-cost trade elasticity to increase from θ to θ 1+γ
γ , but also the intensive

margin effect to decline from σ − 1 to 1+γ
σ+γ (σ − 1). This is confirmed in equation (9). As we

will show later, this result is important for evaluating the relative trade and welfare benefits

of “shallow” trade agreements (that only lower variable trade costs) with those of “deep”

trade agreements (that also reduce fixed trade costs).

3.2 Welfare

In this section, we show two results related to welfare effects under IMC relative to CMC.

First, we show that under IMC the two sufficient statistics to measure the welfare effects

of international trade-cost shocks remain the share of domestic expenditure on domestic

output and the trade elasticity as in ACR. Second, because for a set of parameter values the

trade elasticity is magnified under IMC relative to that under CMC, the predicted welfare

gains from trade are smaller.

First, in section 14 of Online Appendix A, we show that the change in welfare of a given

“foreign” shock (to τij or fij) that leaves unchanged country j’s labor endowment, Lj , as

well as the costs to serve its own market (τjj and fjj) can be expressed as:

Ŵj = λ̂
−1/[θ(1+ 1

γ
)]

jj = λ̂
−1/ετ
jj , (16)

where λ̂jj ≡ λ′jj/λjj is the (gross) change in the share of domestic expenditure (where

λjj = Xjj/Ej) and Ŵj ≡W ′j/Wj is the change in welfare. In the special case of a move from

trade (λjj) to autarky (λ′jj = 1), the gains from trade (Gj) can be expressed as:

Gj = 1− λ
1/[θ(1+ 1

γ
)]

jj = 1− λ1/ετ
jj , (17)

which is identical to equation (12) in Costinot and Rodriguez-Clare (2014). These results

imply that, conditional on the trade elasticity, the impact of trade shocks on welfare are

independent of the structure of marginal costs. At the same time, note that the definition of
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the trade elasticity itself is different in our model. In the presence of IMC, the larger trade

elasticity implies (for a given λjj) a smaller welfare effect than in the constant marginal cost

case, which we will term in this paper the “welfare diminution effect.”

Second, to understand intuitively this welfare diminution effect, consider the benchmark

Melitz model with CMC. The change in welfare (Ŵj) from a reduction in variable trade

costs is directly proportionate to the change in average productivity ( ˆ̃ϕij) and the change in

the number of varieties (M̂ij), cf., Melitz (2003), equation (17). Feenstra (2010) shows also

that the change in welfare can be simplified further to be proportionate to the change in

output of the ZCP firm (qij(ϕ̂
∗
ij)) (see his page 52). As seen in equation (8), under IMC the

output of the cutoff productivity firm is proportional to the cutoff productivity:

qij(ϕ
∗
ij) ∝

(
ϕ∗ij
) γ

1+γ (18)

due to diminishing marginal returns. In the limit, as γ approaches ∞, the relationship

between qij(ϕ
∗
ij) and ϕ∗ij becomes linear, as in the benchmark Melitz model. As a result,

a given change in ϕ∗ij has a smaller effect on output under IMC than CMC. This is the

intuition underlying the “welfare diminution effect” from increasing marginal costs.21

Finally, it will be useful to summarize in a table the differences between the various

“trade” elasticities and welfare-change effects of our model relative to those of the main models

in the trade literature. Adapting Table 3.1 in Head and Mayer (2014), Table 1 contrasts the

ad valorem variable trade-cost intensive margin elasticities, ad valorem variable trade-cost

trade elasticities, fixed trade-cost trade elasticities, and welfare effects from the large class

of models addressed in Arkolakis et al. (2012) with those from this paper.

4 Estimation Methodology, Specifications, and Data

In order to conduct numerical analyses of the welfare gains from fixed- versus variable-

trade-cost changes under increasing versus constant marginal costs in section 6, we need to

estimate all three main structural parameters of the model: σ, γ, and θ.22 To do so, in this

section we introduce a two-pronged estimation method that consists of two reduced-form

equations, both derived from our theoretical model. As is well known, properly specified

21We formalize this intuition using the constant-elasticity-of-transformation (CET) approach of Feenstra
(2010) in sections 14 and 15 of Online Appendix A.

22In recent work, Fajgelbaum et al. (2020) use a setup similar to Feenstra (1994) to estimate both the
bilateral import demand and the bilateral export supply elasticities using disaggregated trade data. Their
approach is quite different from ours. First, they do not include firm heterogeneity in their theoretical
framework; hence, estimating equations differ across the two studies. Second, they identify both elasticities
using a single instrumental variable, tariff rates. Third, they estimate one demand parameter and one supply
parameter common to all industries; by contrast, we estimate hundreds of industry-specific demand and
supply parameters.
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TABLE 1
Elasticities and Welfare Measures by Model

Model
Intensive Var. trade Fixed trade Welfare

margin elast. elast. (ετ ) elast. (εf ) measure

Armington differentiation
σ − 1 σ − 1 n.a. λ̂

− 1
σ−1

jj(Anderson, 1979)
Armington differentiation 1 + γ

σ + γ
(σ − 1)

1 + γ

σ + γ
(σ − 1) n.a. λ̂

− 1
1+γ
σ+γ

(σ−1)

jjand CET (Bergstrand, 1985)
Monopolistic Competition

σ − 1 σ − 1 n.a. λ̂
− 1
σ−1

jj(Krugman, 1980)
Heterogeneity without fixed trade n.a.

θ n.a. λ̂
− 1
θ

jjcosts (Eaton-Kortum, 2002)
Heterogeneity with fixed trade

σ − 1 θ
θ

σ − 1
− 1 λ̂

− 1
θ

jjcosts and Pareto (Chaney, 2008)
Heterogeneity with fixed trade 1 + γ

σ + γ
(σ − 1) θ

(
1 + γ

γ

)
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

− 1 λ̂
− 1

θ( 1+γ
γ )

jjcosts, Pareto, and IMC (BCG)

Notes: This table reports the (positively-defined) ad valorem variable trade-cost intensive margin
elasticity, the ad valorem variable trade-cost trade elasticity, the fixed trade-cost trade elasticity,
and the measure of welfare effects, under various theoretical assumptions as indicated in the first
column’s papers. The trade and intensive margin elasticities reported here for Bergstrand (1985)
assume the case in that paper of σ = µ and γ = η. See Online Appendix B for an explanation; CET
denotes constant elasticity of transformation. n.a. denotes not applicable.

and estimated gravity equations can generate estimates of the (variable trade-cost) trade

elasticity, ετ . In our model, this elasticity is the product of θ and 1+γ
γ . Consequently, to

identify θ, we generate estimates of γ and σ by estimating an extension of the F/BW reduced

form equation. Because of firm heterogeneity, our reduced form equation depends upon a

large number of variables not included in the standard F/BW estimating equation.23 Using

the gravity equation implied by our theoretical model to estimate the trade elasticity and

an estimate of γ from our F/BW reduced form, we can recover an estimate of θ.24

23Although the coefficients of our reduced-form extension of F/BW depend only on the three parameters
of the model (σ, γ, and θ), the large number of non-linear restrictions precludes identification of θ from that
regression. We return to this issue later.

24Due to our goal here of providing a novel methodological approach to estimate all three parameters
(σ, γ, and θ) under our modified Melitz model framework, we omit allowing for heterogeneous bilateral export
supply elasticities – across exporter-importer pairs – as addressed recently in Soderbery (2018) and Farrokhi
and Soderbery (2020). Soderbery (2018), though still relying upon the same assumed bilateral export supply
function as in the F/BW models, moves the literature in a different direction from our paper by exploring
how heterogeneous (by exporter-importer pair) bilateral supply elasticities can help explain importers’ market
power and be adapted to evaluate optimal trade policy. Farrokhi and Soderbery (2020) extend Soderbery
(2018) further. Their section 3 shows that the F/BW approach is a restricted version of a more general
model allowing external economies of scale and labor mobility across industries. Specifically, they argue that
the F/BW approach constrains the bilateral export supply elasticities to have positive slopes and assumes
demand is not “convoluted by supply when using unit values.” Three other studies examine the implications
of increasing returns to scale external to the industry in extensions of the new quantitative trade models, cf.,
Kucheryavyy et al. (2019), Lashkaripour and Lugovskyy (2019), and Bartelme et al. (2019). Extending our
paper in these directions far exceeds the scope of our paper.
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In section 4.1, we derive our extension of the F/BW reduced-form estimating equation

accounting for firm heterogeneity. We begin by summarizing the key aspects of the F/BW

methodology in section 4.1.1. In section 4.1.2, we derive the bilateral import demand

(structural) equation from our model with firm heterogeneity. F/BW assume the existence of

a positively sloped bilateral export supply curve and assume exogenous demand and supply

“shocks” to derive a reduced-form equation. By contrast, in section 4.1.3 we derive the (inverse)

bilateral export-supply (structural) equation from our theoretical model. In section 4.1.4, we

show that F/BW corresponds to a special case of our model and we discuss specifications

and data requirements. In section 4.1.5, we discuss the moment and identification conditions

in the context of our theoretically-based extended model. In section 4.2, we develop the

other reduced-form estimating equation based on the gravity equation implied by our model

to estimate the trade elasticity, which we will then use to generate estimates of θ. While we

implement the model using data for hundreds of industries (as discussed in section 4.1.4),

we omit the industry subscripts in what follows to simplify notation; hence, the derivations

are for any industry.

4.1 F/BW Estimation Methodology Accounting for Firm Heterogeneity

In this section, we derive a (structural) nominal bilateral import-demand-share (XD
ij /Ej)

equation that motivates an estimable bilateral trade-flow-share equation, and a nominal

bilateral export-supply-share (XS
ij/Ej) equation that motivates an estimable bilateral import-

unit-value equation, akin to F/BW. We will show that two error terms surface in these

equations; one error term accounts for the role of deviations from the Pareto assumption

for productivities (for small exporters) addressed in Arkolakis (2010) influencing variables

determining the bilateral trade-share (demand) equation and the other error term accounts

for the role of deviations from the Pareto assumption for productivities influencing variables

determining the bilateral import unit-value (supply) equation. We then derive the reduced-

form estimating equation that controls explicitly for firm heterogeneity, and we demonstrate

that both the moment and identification conditions addressed in F/BW are satisfied.

4.1.1 The Basic F/BW Approach

To understand our contribution, we first provide a brief summary of the F/BW methodology.

The F/BW approach entails a bilateral nominal import-demand-share equation:

∆k ln(XD
ijt/Ejt) = (1− σ)∆k ln pcijt + εijt (19)

where pcijt is the observed bilateral import unit value, t = 1, ..., T indexes time periods,

∆k ln refers to the double difference of a variable with respect to both time and a “reference”
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exporting country k, e.g., ∆k ln pcijt = (ln pcijt − ln pcij,t−1)− (ln pckjt − ln pckj,t−1), and εijt is

an error term that will be discussed shortly.

Rather than estimating the demand equation using instrumental variables to address

simultaneity, F/BW introduce an ad hoc “supply” equation and rely on orthogonal supply

shocks. Their method proceeds in three steps. First, F/BW assume monopolistically compet-

itive firms face upward sloping bilateral export supply to each market, implying a (inverse

supply) function in terms of a nominal bilateral export-supply share (XS
ijt/Ejt):

∆k ln pcijt =
1

1 + γ
∆k ln(XS

ijt/Ejt) + ψijt (20)

where ψijt is an error term that will be discussed shortly. Second, F/BW combine these

demand and supply equations in a particular manner. They rewrite equations (19) and

(20) with εijt and ψijt, respectively, on the LHS, take the latter two terms’ product, and

rearrange terms to obtain:

(∆k ln pcijt)
2 =

1

(σ − 1)(1 + γ)

(
∆k ln sijt

)2
(21)

+
σ − γ − 2

(σ − 1)(1 + γ)

(
∆k ln sijt∆

k ln pcijt

)
+ εijtψijt,

where sijt denotes the (partial equilibrium) trade share, but is measured using the actual

bilateral trade share. Third, under the assumption that the demand and supply error terms

are orthogonal, F/BW use the moment condition E(εijtψijt) = 0 (where E denotes the

expectation operator) to derive a reduced-form equation, averaging each of the variables over

all T observations. Letting Y ij , Z1ij , Z2ij , and εijψij denote the time-averaged means of the

respective variables in equation (21), consistent estimates of the coefficients are obtained by

estimating:

Y ij = β0 + β1Z1ij + β2Z2ij + εijψij (22)

separately for each industry. Because of the double difference, the empirical model identifies

the coefficients from the second moments of the data (i.e., variances and covariances).

Identification therefore relies on the presence of heteroskedasticity such that Z1ij and Z2ij

are not perfectly collinear, cf., Feenstra (1994), page 164.

In the remaining subsections of section 4.1, we show first that our model delivers both

the bilateral trade-flow-share and bilateral import-unit-value analogue equations to those

in F/BW, but based upon micro-foundations from our general equilibrium model of trade.

Second, we show that the moment condition requires the inclusion of additional controls

suggested by our theory. Third, in the context of our general equilibrium framework, the

model calls for a reinterpretation of the error terms used for identification of the coefficients.
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4.1.2 Bilateral Import Demand

In this section and the next one, for brevity we omit the time subscript, t (as well as the

industry subscript, as earlier); in section 4.1.4, we reintroduce the time subscript. Given

product-level bilateral import demand equation (2), aggregate bilateral import demand (for

each industry), QDij , is:

QDij = Mij

∫ ∞
ϕ∗ij

cij(ϕ)µij(ϕ)dϕ = Mijb
1−σ
i EjP

σ−1
j

∫ ∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ, (23)

and the value of aggregate bilateral import demand, XD
ij , is:

XD
ij = Mij

∫ ∞
ϕ∗ij

pcij(ϕ)cij(ϕ)µij(ϕ)dϕ = Mijb
1−σ
i EjP

σ−1
j

∫ ∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ. (24)

Because the two integrals over variety-level prices in the last two equations are not observable,

we cannot use equations (23) or (24) to estimate the parameters of the model. Instead, as in

F/BW, we need to rely on observed bilateral import unit values, pcij , defined as the ratio

of bilateral import value to bilateral import quantity. From equations (23) and (24), the

analytical expression for this ratio is:

pcij ≡
XD
ij

QDij
=

∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ∫∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ
(25)

As this last result makes clear, bilateral import unit values are non-linear functions of

variety-level prices. In the remainder of this section, we use the theoretical model to obtain

analytical expressions for each of the unobserved price integrals in equation (25). Using these

results, we will then be able to express bilateral trade (in shares) as functions of observable

bilateral import unit values (and additional variables).

We proceed in three steps. First, in Online Appendix D, we show that the numerator

and denominator in (25) are both proportional to a ZCP price, pij(ϕ
∗
ij), as follows:∫ ∞

ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ =

[
θ(σ + γ)

θ(σ + γ)− γ(σ − 1)

]
[pcij(ϕ

∗
ij)]

1−σeP1
ij , (26)∫ ∞

ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ =

[
θ(σ + γ)

θ(σ + γ)− γσ

]
[pcij(ϕ

∗
ij)]
−σeP2

ij , (27)

where error terms eP1
ij and eP2

ij capture deviations between the theoretical Pareto distributions

and the actual distributions of productivities. Recall in section 2, we introduced a Pareto

distribution for heterogeneous productivities of firms in order to obtain closed-form solutions,
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as common to theoretical Melitz models. As shown in Arkolakis (2010) and Eaton et al.

(2011), empirical evidence suggests that the Pareto distribution does not approximate

firms’ sales distribution very well for very small exporters, with heterogeneity in this effect

across country-pairs. To account for these deviations from the Pareto assumption on the

distribution of productivities in an empirically tractable manner, we introduce, for example,

a multiplicative error term eP1
ij such that the empirical counterpart to

∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ

is eP1
ij

∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ. When eP1
ij = 1, the distribution is Pareto precisely; for ePij 6= 1,

the distribution is only approximately Pareto.25 As we explain below, the deviations from the

Pareto distribution will play a central role in the identification of the structural parameters

of the model.

Second, we use equations (26) and (27) to solve for the price integral in equation (24).

We begin by substituting with (26) and (27) in equation (25) and rearrange to obtain an

expression for the ZCP price as a function of the corresponding observed average unit value:

pcij(ϕ
∗
ij) =

[
θ(σ + γ)− γ(σ − 1)

θ(σ + γ)− γσ

]
pcij

(
eP2
ij

eP1
ij

)
. (28)

Third, we can combine the results in equations (24), (26) and (28) – after first substituting

equation (9) to replace the productivity threshold ϕ∗ij and an extended version of equation

(11) to allow for deviations (eP3
ij ) from Pareto for the endogenous mass of firms Mij – to

express the share of aggregate nominal bilateral trade flow in total expenditures (sij) as a

function of bilateral import unit value:

sij ≡
XD
ij

Ej
= k3A

1+θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

× E
θ
(

1+γ
γ

)
( 1
σ−1)

j P
(σ−1)+θ

(
1+γ
γ

)
j (pcij)

1−σeDij (29)

where k3 is a constant (defined in Online Appendix D) that depends only on the structural

parameters σ, γ, θ, δ and fe and eDij ≡ eP1
ij

(
eP2
ij /e

P1
ij

)1−σ
eP3
ij . Note the inclusion in eDij

of Pareto deviation component eP3
ij . This term captures the influences of deviations from

Pareto associated with the determination of the mass of firms, Mij , and is determined by two

components, one of which (eP4
ij ) surfaces because 1−G(ϕ∗ij) = (ϕ∗ij)

−θeP4
ij once one allows

deviations from Pareto. eP4
ij is important for eP3

ij , and hence eDij , because of its particular

influence on small exporters that tend to be near the cutoff productivity, consistent with the

25We have re-derived all the results in Online Appendix A accounting for the deviations from Pareto.
In fact, we uncovered five different sources of deviations from Pareto due to the complexity of the model
(eP1
ij , ..., e

P5
ij ). Moreover, we show in Online Appendix D that one such deviation from Pareto (eP4

ij ) contributes
specifically to deviations of firms at the cutoff productivity level (ϕ∗ij), which tend to be smaller exporters.
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evidence that deviations from Pareto tend to surface for small exporters. The superscript D

in eDij refers to the role of deviations from Pareto on the “demand” side (sij).
26

4.1.3 Bilateral Export Supply

We now turn our attention to the bilateral export supply equation. We can invert the optimal

pricing function (6) to get an analytical expression for output as a function of the price.

Using the result, we can define average bilateral export supply (in physical units) as:

qSij ≡
∫ ∞
ϕ∗ij

qij(ϕ)µij(ϕ)dϕ =

[(
γ

1 + γ

)(
σ − 1

σ

)
Ai
wi

]γ ∫ ∞
ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ. (30)

Defining industry bilateral export supply (in physical units) as QSij ≡Mijq
S
ij , using equation

(30) yields any industry’s bilateral export supply:

QSij = Mij

∫ ∞
ϕ∗ij

qij(ϕ)µij(ϕ)dϕ

= Mij

[(
γ

1 + γ

)(
σ − 1

σ

)
Ai
wi

]γ ∫ ∞
ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ.

(31)

Because the integral over firm-level prices and productivity is not observable, we need to

solve for it as a function of the observed bilateral import unit value.

Similar to the import demand equation, we proceed in several steps. First, we solve for

the integral of firm-level prices as a function of the ZCP firm’s productivity level and price.

As shown in Online Appendix D (section D.1), we can use optimal demand equation (2),

the optimal pricing rule (6), and equation (8) for the output of the ZCP firm to derive an

optimal pricing equation that is a function of fij , ϕ
∗
ij , wi/Ai, and ϕ (equation (D.4) in Online

Appendix D). Substituting this optimal price equation into the price integral in equation

(31), assuming our Pareto distribution allowing for deviations eP5
ij , and solving yields:∫ ∞

ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ =
θ(σ + γ)

θ(σ + γ)− γσ
[
ϕ∗ijpij(ϕij)

∗]γ eP5
ij . (32)

26In reality, XD
ij on the LHS of equation (29) is unobservable. Beginning with Feenstra (1994), empirical

implementation has used actual industry-level bilateral trade flows, presumably reflecting (bilateral) partial
equilibrium, i.e., XD

ij = XS
ij . This literature has not incorporated the general equilibrium considerations

addressed in sections 2.4 and 2.5. However, the theoretical trade flows are determined under equilibrium
conditions; in particular, the framework in sections 2.4 and 2.5 assumes goods-market clearing Ri = Ei, i.e.,
multilateral trade balances. Observed trade flows may be influenced by deviations from multilateral trade
balances; in reality, multilateral trade imbalances exist at the aggregate level and at the industry level. In
order to allow for the fact that actual trade flows are not likely to equal equilibrium trade flows, we could
allow theoretical trade-flow shares to deviate from actual trade-flow shares (labeled sij) by an error term
eXij . However, this additional error term is unnecessary to obtain identification for estimation; hence, for
simplicity, we ignore it.
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Second, we can use equation (28) and the fact that pcij = τijpij to define pij(ϕ
∗
ij). Substituting

with the result in equation (32) yields:∫ ∞
ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ =
θ(σ + γ)

θ(σ + γ)− γσ

[
θ(σ + γ)− γ(σ − 1)

θ(σ + γ)− γσ

]γ (
pij
)γ (

ϕ∗ij
)γ
eP5
ij . (33)

Third, substituting the RHS of equation (33) for the integral in equation (31) yields:

QSij = k4Mij

(
Aipijϕ

∗
ij

wi

)γ
eP5
ij , (34)

where k4 is a constant that depends only on the structural parameters σ, γ, and θ (defined

in Online Appendix D). Solving for average price, we get:

pij = k
− 1
γ

4

(
QSij
Mij

) 1
γ wi
Aiϕ∗ij

(
eP5
ij

)− 1
γ . (35)

Fourth, we make the industry bilateral export-supply equation (35) comparable to the

industry bilateral trade-flow-share equation by eliminating QSij , Mij , and ϕ∗ij . The value of

industry bilateral export supply (XS
ij) equals the value of bilateral import demand (XD

ij ),

such that Mijpijq
S
ij =

XD
ij

Ej
Ej or QSij = τij

XD
ij

Ej

Ej
pcij

(recalling that pcij = τijpij). Substituting

this expression for QSij in equation (35), substituting for ϕ∗ij using equation (9) and for Mij

using an extended version of equation (11) allowing deviations from Pareto, substituting sij

for XD
ij /Ej as in the previous section, and solving the resulting expression for pcij yields:

pcij = k5A
−1−

(
θ−γ
γ

)
( σ
σ−1)

i L
− 1

1+γ

i w
γ

1+γ
+
(
θ−γ
γ

)
( σ
σ−1)

i b

(
θ−γ
γ

)
σ

i τ
θ−γ
γ

ij f

θ−γ
γ

1+γ
σ+γ (σ−1)

ij

× E
1

1+γ
+
(
θ−γ
γ

)
( σ
σ−1)

j P
−
(
θ−γ
γ

)
σ

j s
1

1+γ

ij eSij ,

(36)

where k5 is a constant that depends only on the parameters σ, γ, θ, δ, and fe (defined in

Online Appendix D) and eSij ≡
(
eP3
ij e

P5
ij

)− 1
1+γ

. The superscript S in eSij refers to the role of

deviations from Pareto on the “supply” side (pcij).

4.1.4 Reduced-Form Specifications and Data Issues

Following F/BW, we eliminate time-invariant factors by first differencing structural equations

(29) and (36), and then we eliminate importer-specific variables by taking a difference with

respect to a reference exporting country k. From (29), we obtain the double-differenced
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trade-flow-share equation:

∆k ln sijt = (1− σ)∆k ln pcijt + δijt. (37)

where we define a new term δijt as:

δijt =

[
1 + θ

(
1 + γ

γ

)(
σ

σ − 1

)]
∆k lnAit + ∆k lnLit − θ

(
1 + γ

γ

)(
σ

σ − 1

)
∆k lnwit

− θ
(

1 + γ

γ

)
∆k ln bit − θ

(
1 + γ

γ

)
∆k ln τijt −

θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)

∆k ln fijt + εijt. (38)

where (error term) εijt ≡ σ∆k ln eP1
ijt + (1 − σ)∆k ln eP2

ijt + ∆k ln eP3
ijt . The general form of

equation (37) corresponds to the benchmark F/BW structural bilateral trade-flow-share

equation (19) in section 4.1.1 with three notable differences: (i) δijt includes a host of

additional variables (beyond ∆k ln pcijt in equation (19)); (ii) error term εijt in equation (19)

now has a clear interpretation; and (iii) some of the additional variables are unobservable

(e.g., Ait and bit).

First, in the context of our general equilibrium Melitz model, numerous determinants of

the mass of varieties exported from i and the cutoff productivity need also to be accounted for

in the trade-flow-share equation (Ait, Lit, wit, bit, τijt, and fijt). In their absence, coefficient

estimates in benchmark F/BW reduced forms may be substantially biased (i.e., omitted

variables bias, or OVB).

Second, the literature beginning with Feenstra (1994) has assumed that the error term in

the basic F/BW structural trade-flow-share equation can be interpreted simply as a “taste

shock.” However, in the context of our general equilibrium framework, bit is a determinant of

the trade-flow share and so cannot represent the error term. By contrast, in our framework

εijt is driven by deviations from the Pareto distribution for productivities across country

pairs that influence
[∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ
]
,
[∫∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ
]
, and Mij . Note that

∆k ln eP1
ijt , ∆k ln eP2

ijt , and ∆k ln eP3
ijt all have expected values of zero.

Third, several of the additional variables – Ait, Lit, wit, and bit – are exporter-specific

variables but unobservable (Ait, bit) or difficult-to-measure across countries and over time

at the industry level (Lit, wit). At the same time, as discussed below, the coefficients on

these variables will not be relevant to estimating σ, γ, and θ in section 5 and conducting our

counterfactual exercises in section 6. Consequently, we can hold constant the influences of

these four variables by employing an exporter-year fixed effect, labeled α1
it, allowing us to
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rewrite equation (38) more efficiently as:

δijt = α1
it − θ

(
1 + γ

γ

)
∆k ln τijt −

θ 1+γ
γ

1+γ
σ+γ (σ − 1)

∆k ln fijt + εijt. (39)

We obtain the analogous double-difference supply-side equation from equation (36):

∆ ln pcijt =

(
1

1 + γ

)
∆ ln sijt + ηijt, (40)

where we define ηijt analogously as:

ηijt = α2
it +

θ − γ
γ

∆ ln τijt +

θ−γ
γ

1+γ
σ+γ (σ − 1)

∆ ln fijt + ψijt (41)

where ψijt ≡ − 1
1+γ∆k ln eP3

ijt− 1
1+γ∆k ln eP5

ijt .
27 The general form of equation (40) corresponds

to the benchmark F/BW structural bilateral import unit value equation (20) in section 4.1.1

with the three notable differences analogous to equation (38): (i) ηijt includes the same host

of additional variables (beyond ∆k ln sijt in equation (20)); (ii) error term ψijt now has a

clear interpretation; and (iii) some of the additional variables are unobservable (e.g., Ait).

First, if we ignore the additional covariates, the estimated coefficient will suffer from OVB.

Second, the literature beginning with Feenstra (1994) has assumed that the error term in the

structural bilateral import unit value equation can be interpreted simply as a “technology

shock.” However, our general equilibrium framework shows that Ait is a determinant of the

bilateral import unit value and so cannot represent the error term. Third, several of these

additional variables are exporter-specific and unobservable or difficult to measure, suggesting

inclusion of an analogous exporter fixed effect term α2
ijt.

It will be useful at this point to note that, in the trade literature, ad valorem variable trade

costs τijt typically reflect the product of gross tariff rates, labeled tarijt, and gross c.i.f.-f.o.b.

transport-cost factors, labeled transijt (both of which are greater than 1). Consequently,

in the following empirical specifications, we account for both components of variable trade

costs separately.

Having motivated equations (37), (39), (40), and (41), we are now in a position to derive

our reduced-form specifications, following in the spirit of F/BW and section 4.1.1. First, we

can substitute equation (39) for δijt in equation (37), and then solve for εijt on the LHS.

Second, we can substitute equation (41) for ηijt in equation (40), and then solve for ψijt on

27For brevity, we omit here the analogue to equation (38); refer to equation (36) for guidance on this
expression.
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the LHS. Third, we take the product of the two expressions and rearrange terms to yield:

Yijt =
20∑
k=1

βkZijt,k + ξijt, (42)

where

Group 1: Yijt =
(
∆k ln pcijt

)2
, Zijt,1 =

(
∆k ln sijt

)2
, Zijt,2 = ∆k ln sijt∆

k ln pcijt,

Group 2: Zijt,3 = ∆k ln pcijt∆
k ln tarijt, Zijt,4 = ∆k ln sijt∆

k ln tarijt, Zijt,5 =
(
∆k ln tarijt

)2
,

Zijt,6 = ∆k ln pcijt∆
k ln transijt, Zijt,7 = ∆k ln sijt∆

k ln transijt, Zijt,8 =
(
∆k ln transijt

)2
,

Zijt,9 = ∆k ln tarijt∆
k ln transijt,

Group 3: Zijt,10 = αit, Zijt,11 = αit∆
k ln pcijt, Zijt,12 = αit∆

k ln sijt,

Zijt,13 = αit∆
k ln tarijt, Zijt,14 = αit∆

k ln transijt,

Group 4: Zijt,15 = ∆k ln sijt∆
k ln fijt, Zijt,16 = ∆k ln pcijt∆

k ln fijt, Zijt,17 = ∆k ln tarijt∆
k ln fijt,

Zijt,18 = ∆k ln transijt∆
k ln fijt, Zijt,19 = (∆k ln fijt)

2, Zijt,20 = αit∆
k ln fijt,

where ξijt ≡ εijtψijt is a residual. We will explain shortly the relevance of the “Groups” for

motivating the specifications.

The 20 βk’s are functions of only three structural parameters: σ, γ, and θ. The first two

coefficients, β1 and β2, are defined exactly as in F/BW:

β1 =
1

(1 + γ)(σ − 1)
, and β2 =

σ − γ − 2

(1 + γ)(σ − 1)
. (43)

Hence, we can use the same methodology as F/BW to back out structural parameters σ and

γ from the reduced-form estimates of β1 and β2. Importantly, in the context of our Melitz

(2003) model with firm heterogeneity and IMC, equation (42) makes it clear that estimation

of the first two RHS variables will suffer from omitted variable bias (OVB) if variables in

Groups 2-4 are not accounted for in the reduced-form specification.

Following F/BW, a consistent estimator of coefficients β1 − β20 can be obtained by

averaging each of the variables in equation (42) over all t = 1, ..., T . Letting Y ij , Z1,ij , ..., Z2,ij ,

and ξij = εijψij denote the means, this yields the reduced form equation for estimation:

Y ij = β0 +

20∑
k=1

βkZk,ij + ξij , (44)

where the over-bar indicates that the variables are averages over time (e.g., Zij ≡ T−1
∑T

t=1 Zijt).

In the remainder of this subsection, we describe the three specifications we estimate along

with relevant data needs.
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Specification 1: F/BW

As a benchmark, the first specification we estimate includes the three variables in Group

1 only. This is exactly the same specification as in F/BW. According to our model, the

(reduced-form and structural) coefficient estimates will be biased because of omitted variables.

For estimation, we need data on trade flows in values and in quantities at the industry

level. Data for trade flows come from the United Nations’ Comtrade Database. This database

collects bilateral f.o.b. export values that correspond to the transaction value of the goods,

as well as bilateral c.i.f. import values which include the value of services performed to

deliver goods to the border of the importing country. This database also contains information

on the quantities exported and imported.28 We combine the measures of trade flows and

expenditures by industry to construct bilateral trade-flow shares and we combine measures

of bilateral import values and quantities to construct bilateral import unit values. For our

analysis, we define industries as four-digit Standard Industrial Trade Classification (SITC4)

categories. Our sample covers the period from 1999 through 2010; after taking the time

differences, we end up with years 2000-2010.

Specification 2: IMC-Partial

The second specification we estimate includes the variables in Groups 1 and 2. To generate a

sense of the importance of the variables in Group 2 for correcting for OVB, we provide a stand-

alone specification including the nine RHS variables. For illustrative purposes, we provide in

Online Appendix D (section D.3) the derivations for the theoretical coefficients associated

with this specification, labeled IMC-Partial. As explained earlier, the coefficients depend on

only three structural parameters. However, the nine non-linear restrictions implied by the

model prevent identification of all three parameters from this single reduced-form equation;

specifically, the large number of restrictions preclude identification of θ. Nevertheless, the

seven additional RHS variables are included to control for OVB, and estimates of σ and γ

can still be determined from the estimates of β1 and β2.

Using the United Nations’ Comtrade data discussed above, we construct ad valorem

measures of gross transport costs factors transijt from the ratios of the c.i.f. to the f.o.b.

unit values. Feenstra and Romalis (2014) provide a database of ad valorem tariff rates based

upon Most-Favored-nation (MFN) status or any preferential status available, from which we

construct tarijt.
29 The tariff rates are reported at the four-digit SITC level.

28When possible, we convert physical units of measurement to a common denominator (e.g., “Thousands
of items” to “Items”). For industries with multiple units of measurement, we keep only the observations
which report physical quantity in the unit of measurement that account for the largest value of import over
the entire sample.

29This database combines information from the TRAINS data, the World Trade Organization’s (WTO)
Integrated Data Base, the International Customs Journal, and the texts of preferential trade agreements
obtained from the WTO’s website.
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Specification 3: IMC-Full

The third specification will account fully for the variables in all four groups, and will be our

preferred specification to address OVB. As with the IMC-Partial specification, the numerous

non-linear restrictions preclude estimation of θ; however, we can still determine σ and γ

from the estimates of β1 and β2. Later, with reduced-form gravity estimates of the trade

elasticity, we will be able to determine θ. We discuss the motivation for this specification in

two parts.

First, we address the Group 3 variables. A major benefit of specification IMC-Full

is that the inclusion of the exporter fixed effects (αi) and their interactions in Group 3

(alongside the Groups 1 and 2 variables) in the reduced-form equations of the time-averaged

variables eliminates having to include measures of Ai, Li, wi, and bi; recall that Ai and bi

are unobservable. Moreover, the inclusion of the exporter fixed effects and their interaction

terms precludes including proxies for Lit and wit, as the latter terms would create perfect

multicollinearity. Nevertheless, for a robustness analysis, we will discuss later a specification

including the variables in Groups 1 and 2 and crude proxies for Li and wi, but without

exporter fixed effects and their interactions (which implies omitting controls for Ai and bi).
30

Second, we address the variables in Group 4, fijt and its interaction terms. While quality

data exists on ad valorem tariff rates and transport costs, the international trade literature

has so far struggled to construct and implement persuasive measures of bilateral fixed

trade costs that affect only the decisions to export to a foreign market. To date, the most

comprehensive effort to measure these fixed costs is the World Bank’s Doing Business

(DB) indicators. Covering a comprehensive swath of countries over multiple years, the DB

indicators provide a widely respected quantification of the “ease of doing business” along

numerous dimensions. However, unlike the theoretical variable, fijt, which is country-pair

specific, the DB indicators are country specific.31

The World Bank also provides the Deep Trade Agreements database described in Hofmann

et al. (2017) and Mattoo et al. (2020). This database is the first comprehensive source of

information using dummy variables to indicate the presence or absence of each of 937

30In the robustness specification we will report later, we use per capita GDPs of countries as a proxy for
wit. Information on employment is not available at this level of detail. Instead, as a proxy for Lit, we obtain an
estimate of employment. We follow Feenstra and Romalis (2014) and distribute employment across industries
in proportion to export production. For each industry-country-year category, we measure employment as
total employment multiplied by industry export value divided by GDP. Information on employment and
GDP for each country-year is from the Penn World Tables (version 9.1).

31WorldBank (2020), Table 1.1 identifies 12 major country-specific categories of fixed costs that cover
policy (artificial) and non-policy (natural) fixed costs associates with an importing country, ranging across
base of “starting a new business, getting a location, accessing finance, dealing with day-to-day operations,
and operating in a secure business environment.” All such element influence the decision of potential exporter
to enter a foreign market.
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“deep” provisions within 219 preferential trade agreements (PTAs) between pairings of 189

countries annually from 1958-2017. Fortunately, Hofmann et al. (2017) identify so-called

“core” provisions that dominate the DTAs. These core provisions are grouped in 16 “policy

areas” (excluding industrial and agricultural tariff rates, common to 98 percent or of PTAs).32

As noted in Hofmann et al. (2017), liberalization in all 16 policy areas can be categorized

into multilateral (or non-discriminatory) and bilateral (or preferential) liberalization. Of

the 16 areas, 12 are considered multilateral in nature and only four are considered bilateral.

Furthermore, the four “core-WTO-X” policy-areas (competition policy, intellectual property

rights, investment, and movement of capital) that are considered “important features of

DTAs” are multilateral in nature, with almost 90 percent of PTAs including at least one of

them. Finally, Hofmann et al. (2017) note that liberalizations of multilateral provisions are

much more common, compared to liberalizations of bilateral provisions. From years 1980-84

to 2010-15, the average number of multilateral provisions has more than doubled from 4

to 9. By contrast, for the same 30 year period, the average number of bilateral provisions

has increased by only 1, from 4 to 5. This all suggests that reductions in fixed trade costs

due to deep trade agreements is largely captured by exporter-specific and importer-specific

components of fixed trade costs.33

Consequently, our third specification, IMC-Full – including variables in Groups 1, 2, and

3 – can capture the influences of fij owing to the inclusion of an exporter fixed effect and

exporter fixed effects interacted with ∆k ln pcij ,∆
k ln sij ,∆k ln tarij , and ∆k ln transij . The

rationale is the following. Since the discussion above suggests that most of the variation in

ln fijt can be explained across country-pairs and over time by variation in ln fit and ln fjt

– treating the remaining variation as a residual, ln fRijt – the introduction of an exporter

fixed effect, alongside the differencing with respect to reference exporting country k (which

removes importer effects, such as the influences of Ejt and Pjt), can account for most of

the variation in ln fijt, as long as the exporter-fixed-effect interactions are present. To see

this, consider the variable (∆k ln sijt)(∆
k ln fijt) from equation (42). The differencing with

respect to exporting reference country k removes the variation and influence of ln fjt, leaving

variation in ln fit and ln fRijt. Assume ∆k ln fRijt is randomly distributed with mean 0 and

variance σ2
∆ ln fRijt

; we address this later. Suppose ∆k ln fit follows a random walk with a drift

32The 16 policy areas are: competition policy, investment, movement of capital, intellectual property rights,
customs (facilitation), technical barriers to trade, sanitary and photo-sanitary, state aid, GATS (services),
TRIPS (intellectual property), state trading enterprises, TRIMS (investment measure state), export taxes,
anti-dumping provisions, countervailing measures, and public procurement.

33Furthermore, studies such as Baier et al. (2014) show empirically the influence of time-invariant bilateral
variables that affect fixed trade costs, such as bilateral distance. However, the time-differencing of our
explanatory variables eliminates these variables’ influences.
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(Φi); hence, ∆k ln fit = Φi + uit. Substituting Φi + uit for ∆ ln fit yields:

(∆k ln sijt)(∆
k ln fijt) = (∆k ln sijt)(Φi + uit) + (∆k ln sijt)(∆

k ln fRijt). (45)

Summing both sides of equation (45) over t = 1, ..., T and dividing both sides by T yields:

(∆k ln sij)(∆k ln fij) =
1

T

T∑
t=1

Φi∆
k ln sijt +

1

T

T∑
t=1

(∆k ln sijt)uit +
1

T

T∑
t=1

(∆k ln sijt)(∆
k ln fRijt)

= Φi∆k ln sij (46)

because the terms
∑T

t=1(∆k ln sijt)uit and
∑T

t=1(∆k ln sijt)(∆
k ln fRijt) are covariances and

both covariances are zero.34

Finally, it is important to draw attention to the fact that εijt is a linear function of

∆k ln eP1
ijt ,∆

k ln eP2
ijt , and ∆k ln eP3

ijt , but ψijt is a different linear function of ∆k ln eP3
ijt and

∆k ln eP5
ijt . The necessary moment condition in this framework to employ the method-of-

moments estimator is that E(εijtψijt) = 0. However, in the presence of an intercept in the

estimating reduced form, E(εijtψijt) need only be a constant; we will demonstrate this in

the next subsection. Furthermore, identification requires that the relative variances (over

time) of εijt and ψijt differ; we will demonstrate this in the next subsection as well.

4.1.5 Moment and Identification Conditions

Estimation of equation (44) produces consistent coefficient estimates under two conditions.

The first is the “moment” condition, E(ξijt) ≡ E(εijtψijt) = 0. Recalling εijt ≡ σ∆k ln eP1
ijt +

(1− σ)∆k ln eP2
ijt + ∆k ln eP3

ijt and ψijt ≡ − 1
1+γ∆k ln eP3

ijt − 1
1+γ∆k ln eP5

ijt , we show in Online

Appendix D that:

E(εijtψijt) = −
(

1

1 + γ

)
var(∆k ln eP3

ijt ) = −4

(
1

1 + γ

)
var(ln eP3

ijt ) ≡ −4

(
1

1 + γ

)
σ2

ln eP3
ij

(47)

is a constant, where σ2
ln eP3

ij
denotes the variance over time of ln eP3

ijt .
35 Hence, the moment

condition E(εijtψijt) = 0 is met as long as equation (44) includes an intercept, β0 (as in

Feenstra (1994)).

34Note that ∆ ln fRijt needs to be accounted for also in the moment condition and in the identification
condition to be discussed shortly below. Online Appendix D addresses how each of these conditions discussed
in section 4.1.5 is altered in an inconsequential manner.

35Note that σ still denotes the elasticity of substitution in consumption whereas σ2
z denotes the variance

of the variable in the subscript (e.g., z).
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The second is the “identification” condition, which requires that the relative variance of

∆k ln eDij across country-pairs differs from the relative variance of ∆k ln eSij across country-

pairs. Modifying equation (12) in Feenstra (1994), identification in our context requires:

σ2
εij + σ2

εkl

σ2
εmn + σ2

εkl

6=
σ2
ψij

+ σ2
ψkl

σ2
ψmn

+ σ2
ψkl

(48)

where σ2
z , as above, denotes the variance over time of variable z. In terms of our model, the

equivalent expression for identification is:

σ2

(
σ2

∆k ln eP1
ij

)
+ (1− σ)2

(
σ2

∆k ln eP2
ij

)
+

(
σ2

∆k ln eP3
ij

)
+ σ2

(
σ2

∆k ln eP1
kl

)
+ (1− σ)2

(
σ2

∆k ln eP2kl

)
+
(
σ2

∆k ln eP3
kl

)
σ2
(
σ2

∆k ln eP1
mn

)
+ (1− σ)2

(
σ2

∆k ln eP2
mn

)
+
(
σ2

∆k ln eP3
mn

)
+ σ2

(
σ2

∆k ln eP1
kl

)
+ (1− σ)2

(
σ2

∆k ln eP2kl

)
+
(
σ2

∆k ln eP3
kl

)
(49)

6=
σ2

∆k ln eP3
ij

+ σ2
∆k ln eP5

ij
+ σ2

∆k ln eP3
kl

+ σ2
∆k ln eP5

kl

σ2
∆k ln eP3

mn
+ σ2

∆k ln eP5
mn

+ σ2
∆k ln eP3

kl

+ σ2
∆k ln eP5

kl

where ij, kl, and mn denote different country-pairs.

The condition above requires that there must be some differences in the relative vari-

ances of the “demand” (∆k ln eDij ) and supply (∆k ln eSij) disturbances. Although many

factors can explain such differences, the key consideration is that the LHS and RHS of

equation (49) include variances of time-differenced (as well as reference-exporting-country

differenced) Pareto deviations of integrals over different variables. For instance, on the

LHS ∆k ln eP1
ij refers to the double-differenced deviations associated with the (demand-side)

integral
∫∞
ϕ∗ij

[τijpij(ϕ)]1−σµij(ϕ)dϕ. By contrast, on the RHS ∆k ln eP5
ij refers to the double-

differenced deviations associated with the (supply-side) integral
∫∞
ϕ∗ij

[ϕpij(ϕ)]γµij(ϕ)dϕ.

Hence, the inequality condition (49) is likely to hold. It can be shown numerically that if

the relative variances are different, condition (49) does hold.

4.2 Gravity Equation with Firm Heterogeneity

As discussed throughout section 4 so far, our extension of the F/BW framework precludes

estimation of θ using the F/BW reduced-form equation, due to the non-linear restrictions

issue raised above. The previous sections motivate estimation of σ and γ, but only under

explicit controls for exporter masses and export productivity cutoffs to avoid omitted

variables bias as shown by equations (42) and (44). However, our general equilibrium model

suggests gravity-equation (13), as developed in sections 2.4 and 2.5. Consistent with the

gravity-equation literature as summarized in Arkolakis et al. (2012), estimates of the “trade
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elasticity” – the elasticity of bilateral trade flows with respect to ad valorem variable trade

costs – in the context of our model provide reduced-form estimates of −θ
(

1+γ
γ

)
. Using the

trade-elasticity estimates along with estimates of γ discussed above (by sector), industry-

specific estimates of θ are readily determined. With all three structural parameters, numerical

counterfactuals then can be performed in section 6.

We follow the econometric literature for estimating trade elasticities in the presence of

panel data, where in our case we use industry-level nominal bilateral trade flows. Much of the

recent literature on estimation of trade-policy effects using panel data in gravity equations

follows Baier and Bergstrand (2007) and Baier et al. (2008, 2014, 2018). Consistent with

these papers, the trade elasticity can be identified using a log-linear regression equation of

bilateral trade flows (Xijt) on exporter-year fixed effects, importer-year fixed effects, and a

measure of ad valorem bilateral trade costs τijt. Using equation (13), such a specification is:

Xijt = β0 + φit + Ψjt − θ
(

1 + γ

γ

)
ln τijt +

1−
θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)

 ln fijt + ϑijt (50)

where φit are exporter-year fixed effects capturing the influences of Ait, Lit, wit, and bit in

equation (13), Ψjt are importer-year fixed effects capturing the roles of Ljt, wjt, and the

(large) multilateral price/resistance term of the importer in the denominator of the first

RHS term (in parentheses) in equation (13), and ϑijt is an error term.

In estimating equation (50), three issues surface. The first is that τijt is associated

with both (gross) bilateral tariff rates, tarijt, and c.i.f.-f.o.b. transport-cost factors, transijt.

We introduce these variables separately. However, due to more confidence in the observed

measures of tariff rates, we use estimates of the trade elasticity from the tariff-rate variable.

The second issue concerns the potential endogeneity of the tariff-rate variable. There is an

extensive literature noting the potential endogeneity of tariff rates and/or dummy variables

for economic integration agreements, cf., Trefler (1993) and Baier and Bergstrand (2007),

respectively. Consequently, to anticipate this potential endogeneity of tariff rates, we estimate

equation (50) using a two-stage instrumental variables approach. In the first stage, we regress

the (gross) bilateral tariff rate (by industry), tarijt, on the mean over country j’s bilateral

tariffs with all other non-i countries ; this variable is likely to be insensitive to Xijt. We then

use the instrument constructed from the first stage, ˆtarijt, in the second stage regression,

the gravity equation in (50), alongside our measure of the c.i.f.-f.o.b. transport-cost factor.36

The third issue concerns accounting for variation in fixed trade costs, fijt. As we addressed

above for the F/BW specifications, variation in fijt can be decomposed into three terms:

36Note that endogeneity of tariff rates is not a concern in our F/BW specifications as those are reduced-form
regressions using time-averaged variances and covariances of double-differences of the underlying variables.
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an exporter component fit, an importer component fjt, and a residual bilateral term fRijt.

As summarized above, much of the observed policy-based and non-policy-based factors

that influence fixed trade costs tend to be multilateral – or country-specific – in nature.

Consequently, regarding equation (50) above, the exporter-year and importer-year fixed

effects will capture the vast bulk of variation in ln fijt via ln fit and ln fjt, respectively,

leaving residual variation in ln fRijt to be accounted for by the error term ϑijt.

5 Estimation Results

Section 5.1 presents the results from using our gravity equation to obtain estimates of the

ad valorem variable trade-cost (positively defined) “trade elasticity,” ετ = θ
(

1+γ
γ

)
. Section

5.2 provides the estimates of (structural) parameters σ and γ using our three specifications

applying the F/BW methodology. Using these estimates, section 5.3 provides the implied

estimates of θ and of the fixed trade-cost trade elasticity, εf =
θ 1+γ

γ
1+γ
σ+γ

(σ−1)
− 1. These estimates

will then be used in section 6 for two numerical counterfactual analyses.

5.1 Estimation of ετ

Because we obtain hundreds of estimates across industries, it would not be practical to

report them all; instead, we present only the distributions of the estimated coefficients.

Table 2 provides the distribution of estimates of the (ad valorem variable trade-cost) “trade

elasticity” in columns 2 and 3 using our gravity equation (50). The only difference between

the two specifications is that column 2 uses observed gross tariff rates (tarijt) whereas

column 3 uses our (two-stage least squares) instrument for gross tariff rates. As evident,

the distributions of the two sets of estimates are very similar. On econometric grounds, our

preferred specification is that in column 3. Recalling that the data is at the 4-digit SITC

industry level, the median estimated ad valorem trade elasticity is 10.08, which is in line

with previous estimates; the 10th-90th percentile range is 3.82-17.35.37

5.2 Estimation of σ and γ

Estimation results are reported in Table 3.38 As addressed earlier, the first specification,

labeled “F/BW,” is the specification F/BW that includes only Group 1 variables and assumes

37The 10th-90th percentile range of values found is consistent with other estimates using disaggregated
bilateral cross-sectional/time-series trade data , cf., Hillberry and Hummels (2013). Aggregate trade data
generates lower trade elasticity estimates in the range of 2-10, cf., Anderson and van Wincoop (2004).

38We keep only industries for which the parameters of the model conform to the theoretical restrictions
(i.e., σ > 1 and γ > 0) for all three specifications. About 25 percent of industries for which we have data are
excluded from our sample. By comparison, Broda and Weinstein (2006) exclude about 35 percent of their
industries.
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TABLE 2
Estimated Variable Trade Cost Elasticities

Percentile Trade elasticity

OLS IV

1 −0.29 0.36
5 2.42 2.24
10 3.97 3.82
25 6.55 7.16
50 9.41 10.08
75 12.37 13.59
90 15.92 17.35
95 18.52 19.67
99 28.13 27.44

Notes: This table presents the distributions of the estimated structural parameters of the model
obtained from estimating equation (50) separately for each of 568 industries in our sample.

that the coefficients on the remaining variables in Groups 2-4 are zero. At the median, the

estimate for σ is 4.70, which is in the middle of the range of σ estimates from Feenstra

(1994), Table 2 for the six manufactured goods of 2.96 to 8.38; the median estimate in that

group in Feenstra (1994) is 5.0. Furthermore, our range of σ estimates for percentiles 1-99 of

2.65-27.82 is similar to the range of 2.96-42.9 for all eight goods in Feenstra (1994). Broda

and Weinstein (2006) provide four-digit SITC estimates for two different (averaged) time

periods, 1972-1988 and 1990-2001. Using their mean estimates for differentiated products, the

σ estimates for 1972-1988 and 1990-2001 are 5.2 and 4.7, respectively. Hence, our benchmark

F/BW σ estimate of 4.70 is in line with both of those sets of estimates.

Our median estimate of γ using our benchmark two-RHS-variable F/BW specification is

4.03, which is also in the middle of the range of (positive) γ estimates from Feenstra (1994),

Table 2 for four manufactured goods of 1.94 to 6.58; the median estimate in that group

in Feenstra (1994) is 2.43. Furthermore, our range of γ estimates for percentiles 1-99 of

0.46-58.19 is similar to the (positive) range of 1.94-27.8 for the six goods in Feenstra (1994).

Unfortunately, Broda and Weinstein (2006) do not report their estimates of γ.

The second specification, labeled “IMC-Partial,” employs Group 1 and Group 2 variables,

and assumes the coefficients on the remaining variables in Groups 3-4 are zero. Of course,

the ad valorem (variable) trade-cost variable τijt reflects both ad valorem (gross) tariff rates

(tarijt > 1) as well as (gross) transport-cost factors (transijt > 1), as discussed above. Hence,

in the context of equation (42), adding Group 2 variables adds seven more RHS variables.39

Turning to this specification’s median estimates, the estimate of σ of 6.08 is 29 percent larger

in value than that in specification 1, implying OVB in the F/BW specification. Similarly,

39Recall that the explicit IMC-Partial specification is provided in section D.3 of Online Appendix D.

34



TABLE 3
Estimated Import Demand and Supply Elasticities

Percentile
F/BW IMC-Partial IMC-Full

σ γ σ γ σ γ

1 2.65 0.46 2.61 0.64 2.73 0.79
5 3.01 1.18 3.27 1.44 3.29 1.61
10 3.34 1.61 3.77 1.93 3.80 2.29
25 3.96 2.36 4.62 3.34 4.85 3.57
50 4.70 4.03 6.08 5.99 6.45 6.00
75 6.02 7.00 9.23 11.31 9.26 10.96
90 8.68 14.09 15.12 22.20 14.90 21.40
95 11.52 21.83 22.79 35.14 20.73 30.71
99 27.82 58.19 87.25 76.73 55.92 69.51

Notes: This table presents the distributions of the estimated structural parameters of the model
obtained from estimating equation (44) separately for each of 568 industries in our sample using three
different specifications (see main text for details). The parameter σ is the elasticity of substitution
and the parameter γ is the inverse marginal cost elasticity of output.

the median estimate of γ in specification 2 is 5.99, which is 49 percent larger than that in

specification 1. These are notable differences.

The third specification, labeled “IMC-Full,” includes the variables described earlier in

Groups 1 and 2, but also includes an exporter fixed effect and exporter fixed effects interacted

with ∆k ln pcij ,∆
k ln sij ,∆k ln tarij , and ∆k ln transij . Turning to this specification’s median

estimates, the estimate of σ of 6.45 is 37 percent larger in value than that of σ in F/BW

specification 1. Similarly, the median estimate of γ in specification 3 is 6.00, which is 49

percent larger than that in specification 1. These estimates are similar, but with slightly larger

values than the respective estimates in specification 2 and are notably different from those

in benchmark specification 1. In the context of our theoretical model, previous estimates

reveal OVB.40

The results presented in Table 3 have three important implications. First, our IMC

estimates are quite different from the benchmark estimates. Our fuller specifications increase

the estimated values of the elasticity of substitution and the bilateral export supply elasticity.

Second, our IMC estimates are robust to changes in specifications. In addition to the median,

the distributions of the estimates are quite similar across our both IMC specifications. Third,

the estimated parameters are distributed densely around the medians.

Although we are able to compare our specifications’ estimates for the elasticities of

substitution with those in Feenstra (1994), Broda and Weinstein (2006), and potentially

40In a robustness check, using data and proxies discussed earlier for wit and Lit alongside variables in
Groups 1 and 2, but ignoring unobservable variables Ai and bi and omitting exporter fixed effects, our median
σ estimate is 6.50 and our median γ estimate is 6.34, both similar to the respective estimates for IMC-Partial
and IMC-Full.
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other studies’ previous empirical results using similar data, the literature provides few

comparisons for our estimates of γ; only Feenstra (1994) provides estimates for comparison.

As noted, Broda and Weinstein (2006) do not report estimates for γ. However, Hottman et al.

(2016) report an (implied) median estimate of γ of 6.25 using U.S. barcode firm-level data.

Interestingly, this median estimate lies near our median IMC estimates using industry-level

international trade data, but controlling for firm heterogeneity. In the next subsection, we

address the importance of precise and unbiased estimates of γ for estimating θ and estimating

the fixed-trade-cost elasticity, εf . In section 6, we demonstrate the importance of γ estimates

for relevant policy-oriented quantitative comparative statics.

5.3 Estimation of θ and εf

Armed with estimates of ετ and γ, we can use our model to compute values for θ and εf .

From gravity equation (50), ετ = θ(1 + γ)/γ. This implies that we can recover estimates for

θ as follows:

θ =

(
γ

1 + γ

)
ετ . (51)

The fixed cost elasticity can then be recovered from our estimates of σ, γ and θ and equation

(15):

εf =

 θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)

− 1

 . (52)

The distribution of estimates are reported in Table 4. Using the estimated values of the

trade elasticity using IV (reported in Table 2) and the estimated values of γ (reported in

the last column of Table 3), the second column of Table 4 provides at various percentiles

the estimated values of θ, as implied by equation (51). As reported in the table, the median

estimate of θ is 8.50. The third column of Table 4 reports the estimated values of the fixed

trade-cost trade elasticities, εf , at various percentiles using equation (52) and our estimated

values of σ, γ, and θ. These elasticities, along with our estimates of the three structural

parameters, will be useful for our numerical comparative statics in the next section. As

just one clue to the importance of IMC in those analyses, note that the fixed trade-cost

trade elasticity at the median is 2.39. However, under the case of CMC, the theoretical fixed

trade-cost trade elasticity (defined positively) is θ
σ−1 − 1, which is (under CMC) the (ad

valorem variable trade-cost) “trade elasticity“ relative to σ − 1 (minus 1). Using the median

trade elasticity of 10.08 (from our gravity estimation) and our IMC-Full estimate of σ of

6.00, the implied CMC fixed trade-cost trade elasticity is only 1.02. Hence, under IMC, fixed

trade-cost reductions have a larger impact of 2.3 times.
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TABLE 4
Estimated Pareto Parameters and Fixed Trade Costs Elasticities

Percentile θ εf

1 0.27 −0.91
5 1.54 −0.40
10 3.03 0.09
25 5.73 1.08
50 8.50 2.39
75 11.34 4.04
90 15.13 5.88
95 17.32 7.89
99 24.39 11.95

Notes: This table presents the distributions of the Pareto parameters and the elasticities of trade
estimated separately for each of the 568 industries in our dataset.

In the next section, we use our estimates to provide two different quantitative counter-

factual exercises, with the purpose of showing the quantitative importance of accounting for

empirically-justified increasing marginal costs in the evaluation of: (i) the “gains from trade,”

and (ii) the trade and welfare impacts of fixed trade-cost reductions relative to variable

trade-cost reductions, the two main elements of deep trade agreements.

6 Numerical Analyses

Having established in the previous section strong empirical evidence of increasing marginal

costs using international data, we provide in this section two numerical analyses to illustrate

the importance of allowing for IMC. First, for a given set of parameters, we quantify

the impact of allowing for increasing marginal costs in welfare calculations. Second, we

use our estimates to show that the necessary changes to fixed trade costs, to obtain the

welfare-equivalent of (small) changes to variable trade costs, are much smaller in the case of

empirically-justified increasing marginal costs than in the case of constant marginal costs,

helping to explain the increasing prominence of deep trade agreements in the world economy.

6.1 Counterfactual 1: Welfare Gains from Trade

We provide in this section a numerical analysis in the spirit of Feenstra (2010) and Costinot

and Rodriguez-Clare (2014) to illustrate the importance of allowing for IMC in welfare

calculations. We show using representative values of the (inverse) index of the heterogeneity

of firms’ productivities (θ) and of the inverse marginal cost elasticity of output (γ) that

the welfare gains from trade are reduced by about one percentage point in the case of IMC

relative to the case of CMC.
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From equation (17), the percentage change in real income associated with moving from

the initial equilibrium (with trade) to autarky for country j is given by (100 times):

Gj = 1− λ1/ετ
jj , (53)

where λjj is the domestic absorption share of GDP and ετ = θ
(

1+γ
γ

)
.41 Consequently, the

only additional data needed for this numerical exercise is trade shares. As in Feenstra (2010),

we use information on nominal exports and nominal GDPs from the Penn World Tables to

calculate export shares.42 A key consideration here is comparing the gains from trade with

CMC versus the gains from trade with IMC. Consequently, we also calculate the gains from

trade assuming a value of γ =∞ to obtain a benchmark value.

As explained earlier, welfare gains from trade depend on two sufficient statistics: the trade

share and the trade elasticity. We explore the impact of variation in each separately, beginning

with changes in the trade elasticity. In our sample, the mean trade share is 39.1 percent,

so we set λjj = 60.9. Conditional on that trade share, Table 5 presents the distribution

across industries of the gains from trade (relative to autarky) under the assumption of CMC

(γ =∞) and IMC as indicated at the top of each column. Our median estimate under IMC

is 4.78 percent, which is a reduction of 15.4 percent from the welfare gain of 5.65 percent in

the benchmark case of constant marginal costs (γ =∞). These values are consistent with

the “welfare-diminution” effect discussed in section 3.

41In Feenstra (2010), p. 53, Gj is defined as [(1 − ExportSharej)−1/θ − 1]/[(1 − ExportSharej)−1/θ].

However, using ACR notation and some algebra, this simplifies to Gj = 1− λ1/θ
jj , which is identical to the

measure of Gj in Costinot and Rodriguez-Clare (2014), p. 204.
42We could just as easily used the World Input-Output Database (WIOD) used in Costinot and Rodriguez-

Clare (2014), but chose the set of countries in Feenstra (2010) largely due to the broader sample and wider
variation in the levels of countries’ per capita real GDPs.
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TABLE 5
Welfare Gains from Trade, 2010

Percentile CMC IMC

1 2.01 1.79
5 2.81 2.48
10 3.21 2.81
25 4.26 3.57
50 5.65 4.78
75 8.24 6.66
90 15.02 12.09
95 27.47 19.08
99 84.28 74.83

Notes : This table presents the absolute value of the percentage change in real income associated with

moving from the initial equilibrium to autarky given by 1− λ1/ετjj , where λjj is domestic absorption.
In our sample, the mean trade share is 39.1, so we set λjj = 60.9. We compute gains from trade
separately for each of the 568 industries in our sample. In this section, we use sjj to measure λjj .

Table 6 presents the results for the impact of changes in the trade share, holding the

elasticity constant at the median values. It reports calculations of the gains from trade for

20 countries of various levels of per capita real GDP, similar to Table 3.1 in Feenstra (2010).

As expected, countries with larger export shares have larger gains from opening up from

autarky. For instance, the United States has a small export share; consequently, the gains

from trade are smaller. However, the presence of IMC still has a substantive effect for the

United States; the reduction of welfare of 0.24 from 1.53 to 1.29 owing to increasing marginal

costs is 15.6 percent. Overall, the results presented in this section suggest that increasing

marginal costs have substantive effects on welfare calculations.

6.2 Counterfactual 2: Welfare-Equivalent Changes and Deep Trade Agree-

ments

As discussed in the introduction, the “new millennium” has also introduced “new types

of trade agreements.” The stark contrast between shallow versus deep trade agreements is

essentially the difference between reducing ad valorem tariff rates on international trade

versus reducing “regulatory heterogeneity”:

Accordingly, the emphasis of trade liberalization has shifted from reducing protec-

tionist barriers (i.e., tariff rates) to harmonizing – to the extent possible – rules

and regulations. Noting the shift in emphasis, former WTO Director General

Pascal Lamy put it this way: “TTIP isn’t about trade trade-offs, but a process of

regulatory convergence, which is a totally different ball game.” Norberg (2015),

p.1.
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TABLE 6
Welfare Gains from Trade for Selected Countries, 2010

Name GDPPC Export Share CMC IMC

Guinea 1,677 30.34 4.16 3.52
Mali 1,736 22.84 3.00 2.54
Nepal 1,807 9.58 1.18 0.99
Kyrgyzstan 2,863 51.55 8.17 6.93
Republic of Moldova 3,737 39.23 5.69 4.81
Congo 4,709 65.81 11.86 10.09
Guatemala 6,293 25.81 3.45 2.91
China 9,423 26.27 3.52 2.97
Thailand 13,109 66.49 12.07 10.26
Gabon 13,151 57.66 9.62 8.16
Brazil 13,623 10.74 1.33 1.12
Malaysia 20,192 86.93 21.29 18.26
Israel 30,538 35.02 4.94 4.18
Bahamas 31,413 34.95 4.93 4.17
Italy 35,936 25.19 3.36 2.83
Germany 40,481 42.25 6.26 5.29
Saudi Arabia 41,482 49.57 7.74 6.56
United States 49,907 12.32 1.53 1.29
Norway 57,900 39.73 5.78 4.89
Bermuda 62,290 49.69 7.76 6.58

Notes : This table presents the absolute value of the percentage change in real income associated with

moving from the initial equilibrium to autarky given by 1− λ1/ετjj , where λjj is domestic absorption,
computed for selected countries for year 2010. To the extent possible, we choose the same countries
as in Table 3.1 of Feenstra (2010) to facilitate comparison.

As illustrated recently in the United States-Mexico-Canada Agreement, the successor

to NAFTA, deep trade agreements embody a large increase in the number of chapters and

the scope of the agreement. In reality, these developments essentially span three (partially

overlapping) areas:

1. Modern trade agreements have been deepened to cover services trade flows, capital

flows, migration flows, and idea flows;

2. Modern trade agreements aim to reduce barriers at the border and behind the border

in terms of regulatory convergence, such as trade facilitation (customs administration),

technical barriers to trade, sanitary and phytosanitary measures, and competition

policy;

3. Modern trade agreements extend to addressing environmental policy and labor rights.

For our purposes, we are addressing the second category, where regulatory divergences create

costs of trade unrelated to the level of output, i.e., fixed trade costs.
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One of the earliest studies to document and categorize the degree to which European

Union and United States’ preferential trade agreements (PTAs) incorporated liberalizations

beyond tariff-rate reductions that would reduce fixed trade costs is Horn et al. (2010),

documenting such liberalizations beyond that established by the World Trade Organization

(WTO). Evidence from the World Bank’s DTA database suggests that several (inverse)

indexes of fixed trade costs – legally enforceable provisions provided in DTAs such as trade

facilitation, technical barriers to trade, sanitary and phytosanitary measures, and competition

policy – have increased over time. For instance, Hofmann et al. (2017) note that the simple

count of legally enforceable provisions included in PTAs increased from 8 to 17 from the

1990s to 2015. More rigorously, Hofmann et al. (2017) created a measure of depth of PTAs

using Principal Components Analysis (PCA); this PCA measure indicated that PTAs’ depth

has increased, on average, 150 percent from the 1980 to 2015, as seen in Figure 2.

Figure 2: Hofmann et al (2017) PCA Measure of DTA “Depth” Over Time

Moreover, recent empirical studies using gravity equations have demonstrated evidence

of substantive effects of reductions in policy-related fixed trade costs on bilateral trade

flows. First, Baier et al. (2014) documented using state-of-the-art panel techniques that

deeper economic integration agreements (embodying fixed-trade-cost reductions) had larger

partial effects on bilateral trade flows. Baier and Regmi (2020) was the first study using

machine-learning techniques to show that deeper PTAs have larger trade-creation effects,

noting substantive effects from provisions on anti-dumping, competition policy, customs

harmonization, e-commere, export and import restrictions, sanitary and phytosanitary
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measures, and technical barriers to trade. Breinlich et al. (2021) similarly used machine-

learning techniques to examine the effects of deep trade agreement provisions on trade

flows, finding that provisions associated with technical barriers to trade, anti-dumping, and

competition policy had significant effects. Other recent studies finding significant effects of

DTAs on trade flows are Crowley et al. (2020) and Fontagne et al. (2022).

While empirical studies are now starting to flourish given the World Bank’s new data base

on the DTAs, the theoretical and quantitative welfare effects of deep trade agreements have

been scarcely examined, especially in the context of the new trade theory with heterogeneous

firms. Specifically, to the authors’ knowledge only four papers address systematically quanti-

fying the trade and welfare effects of bilateral (ad valorem) variable trade-cost liberalizations

relative to fixed trade-cost changes. As mentioned in the introduction, Zhai (2008) is among

the earliest of these rare studies that have introduced a Melitz model into a CGE model

to calculate the trade and welfare effects of three types of policy simulations: a 50 percent

tariff-rate cut, a 5 percent reduction in variable trade costs, and a 50 percent reduction in

fixed trade costs. The CGE model’s implementation of the Melitz framework (under CMC)

is consistent with the discussion in this paper. For purposes of this paper, we discuss the

implications of the latter two simulations; the reason is that Zhai (2008) allows tariffs to

generate income, whereas variable trade costs are “iceberg” trade costs, as in this paper.

A 50 percent tariff-rate reduction in Zhai (2008) reduces disposable income, which has an

offsetting effect on expenditures and trade; the model in this paper ignores this aspect (which

is left for future research).

Using a multi-country framework, a value of σ of 5, and a value of θ of 6.2, Zhai (2008)

found for the United States, for example, that a 5 percent reduction in variable trade costs

increased welfare by 32.8 billion (US) dollars. In the context of his model, a 50 percent

reduction in fixed trade costs increased welfare by 44.8 billion (US) dollars. Hence, the

welfare-equivalent reduction in fixed trade costs would be 36 (29) percent, to match a 5 (4)

percent reduction in variable trade costs (or a ratio of approximately 7.25:1). This accords

quantitatively to the notion that, for the same percent reduction in the cutoff productivity

ϕ∗ij , the fall in fij would need to be about 7 times, since ϕ∗ij adjusts in proportion to f
1/(σ−1)
ij

in the case of CMC. In CGE analyses of the TTIP, a reduction of 36 percent in non-tariff

measures was considered “very ambitious,” and such a differential suggests against the

proliferation of deep trade agreements.

To the authors’ knowledge, only three other papers have considered CGE analyses using

a Melitz framework, Balisteri et al. (2011), Dixon et al. (2016), and Arkolakis et al. (2021).

The structure of Balisteri et al. (2011) is similar in many respects to Zhai (2008), but differs

in several other respects. Balisteri et al. (2011) actually estimate values for σ and even θ,

and use exporter and importer fixed effects to estimate exporter- and importer-specific fixed
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trade costs (assuming CMC). The residuals in their approach are bilateral fixed trade costs,

which adjust to match the simulated bilateral trade flows to actual trade flows. This method

yields some difficult-to-rationalize bilateral fixed trade costs. For instance, the bilateral

fixed trade cost of exports from the United States to Japan is twice as high as that from

Canada to Japan; moreover, the fixed trade costs of intra-national Japanese trade are the

same as fixed trade costs from Canada to Japan. Nevertheless, Balisteri et al. (2011) only

compare a 50 percent reduction in tariff rates against a 50 percent reduction in fixed trade

costs, which provides a non-comparable comparison to Zhai (2008) and our model, since

tariff cuts in Balisteri et al. (2011) involve reductions in disposable income and cannot be

compared to a 50 percent reduction in iceberg variable trade costs, as we know from Zhai

(2008). Another CGE model with a Melitz framework is Dixon et al. (2016). However, this

study only examined relative impacts of reductions in (ad valorem) variable trade costs

across Melitz and Krugman versions of their model. Finally, as noted in the introduction,

Arkolakis et al. (2021) extends the Melitz model of trade to show that – for multiproduct

firms facing constant marginal costs in producing their core product (though increasing

marginal market-penetration costs) – additional products that are farther from the firm’s

core competency face increasing marginal production costs (despite economies of scope in

market-access costs). Of particular relevance to this paper, the last substantive section of

Arkolakis et al. (2021) conducts counterfactual experiments of reductions in market-access

costs and, for comparison, tariff rates. In their baseline simulation, the elimination of the

recently observed average 4 percent tariff rates in the world generates a welfare gain of 1.8

percent. In contrast, using their Table 6, Counterfactual 1 experiment of reducing total

market-access costs, a 15 percent reduction in such fixed trade costs improves welfare by 2.0

percent. Hence, for comparison of the results in this model relative to Zhai (2008) (and later

to our counterfactual), it would take a 13 percent reduction in fixed trade costs to generate

the same welfare as a reduction in tariff rates of 4 percent, a ratio of 3.25:1.

In our second counterfactual, we are interested in measuring fixed trade-cost changes,

f̂ij , that are equivalent in welfare to changing a given (ad valorem) variable trade cost, τ̂ij .

In our model, as seen in equation (13), we can write:

φij = τ−ετij f
−εf
ij , (54)

such that for a given value of (the gross tariff rate) τ̂ij , we define the welfare-equivalent fixed

trade-cost change as f̂ij = τ̂

ετ
εf

ij . This gives the increase in fixed trade costs that is equivalent

to an increase in variable trade costs in terms of its impact on trade flows and welfare.43

43We express the term as shown for expositional convenience. Mathematically, for values φij = τ−ετij f
−εf
ij

and φ̃ij = τ̃−ετij f̃
−εf
ij , if φij = φ̃ij then f̂ij = τ̂

− ετ
εf

ij where f̂ij ≡ f̃ij/fij and τ̂ij ≡ τ̃ij/τij .
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Using results from section 3, the ratio of elasticities plays a critical role in defining

welfare-equivalent trade-cost changes. From the theoretical model with IMC, we know that:

ετ
εf
≡

θ
(

1+γ
γ

)
θ
(

1+γ
γ

)
1+γ
σ+γ

(σ−1)
− 1

. (55)

For any value of γ < ∞, this ratio is smaller than in the benchmark CMC case. In the

limit, as γ →∞, the ratio converges to the benchmark. This implies that under IMC the

welfare-equivalent change f̂ij for a given τ̂ij is smaller than under CMC. The economic

intuition was discussed in section 3.

Consider the median values of our estimated parameters using the IMC-Full specification

from section 5, σ = 6.45, γ = 6.00, and θ = 8.50. Substituting in these values yields:

CMC :
ετ
εf

=
θ

θ
σ−1 − 1

= 15.18 (56)

IMC :
ετ
εf

=
θ
(

1+γ
γ

)
θ 1+γ

γ
1+γ
σ+γ

(σ−1)
− 1

= 4.44 (57)

Armed only with observable estimates of variable trade costs (for which we use average MFN

tariff rates), we can then obtain a fixed trade-cost change that is equivalent in welfare to

introducing a country’s – or an average of countries’ – MFN tariff rates. In our sample, the

average tariff rates applied is about 4 percent. This implies that the welfare-equivalent fixed

costs changes are:

CMC : f̂ = (1.04)15.18 = 1.81 (58)

IMC : f̂ = (1.04)4.44 = 1.19. (59)

These results make clear that the equivalent change is much larger under CMC.

The welfare-equivalent fixed trade-cost change depends on two sufficient statistics: the

level of trade barriers and the ratio of elasticities. As we did for welfare, we explore the

impact of each in turn. Table 7 reports the distribution of the ratio of welfare-equivalent fixed

trade-cost changes across industries. To discipline the quantitative exercise, we use the mean

tariff of 4 percent in each industry and consider the introduction of the tariff rate as our

shock, τ̂ .44 We compute the welfare-equivalent change for two separate cases, the benchmark

CMC case of γ →∞ and the IMC case, as indicated at the top of each column. The table

44Due to our model’s construct, we are ignoring any change of tariff revenue, leaving this for future
research.
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shows that, for the median industry, the equivalent fixed trade-cost change under CMC is 38

percent, whereas under IMC it is only 15 percent. Both distributions of welfare-equivalent

fixed trade-cost changes start at 0 percent, but the CMC distribution has a much thicker

right tail. At the 90th percentile of the distribution, the equivalent fixed trade-cost change

is an increase of 368 percent. But under IMC, it is a much more reasonable 32 percent.

Most importantly, we note the following implications from Table 7. For the median

industry, under CMC in our model, it would take a 28 [=100(1-1/1.38)] percent reduction in

fixed trade costs to be welfare equivalent to a 4 percent reduction in variable trade costs.

This result is very similar to the findings mentioned earlier for Zhai (2008). By contrast,

in our model with IMC, it would take only a 13 percent reduction in fixed trade costs to

be welfare equivalent to a 4 percent reduction in variable trade costs, which accords more

with the study of Brazilian exporters in Arkolakis et al. (2021), which allowed increasing

marginal market-penetration costs and increasing marginal costs associated with non-core

additional products.

TABLE 7
Equivalent Fixed Costs Change

CMC IMC

Percentile ετ/εf f̂ ετ/εf f̂

1 2.08 1.08 1.23 1.05
5 2.68 1.11 1.88 1.07
10 3.57 1.15 2.14 1.09
25 5.08 1.21 2.79 1.11
50 8.35 1.38 3.69 1.15
75 16.82 1.91 4.87 1.21
90 40.27 4.68 7.23 1.32
95 219.75 21.30 9.20 1.42
99 546.47 4550.28 16.90 1.91

Notes: This table presents the distribution of the average industry-level welfare-equivalent fixed-trade-
cost changes (f̂). We set τ = 1.04 (the sample import-weighted mean) and let the elasticity of sub-
stitution (σ), the inverse elasticity of marginal costs (γ), and the Pareto parameter (θ) vary across

industries. The equivalent fixed-trade-cost changes are obtained from f̂ij = τ̂
ετ/εf
ij . We keep the 406

industries in the sample for which the fixed-trade-cost elasticities are positive.

Table 8 reports the distribution of the ratio of welfare-equivalent fixed trade-cost changes

for selected countries. This exercise aims to illustrate the impact of differences in trade

barriers, so we set the ratio of elasticities at their median values. For each country, we

compute the import-weighted average tariff. Again, we set the shock to introducing the

country’s average tariff rate. As in Table 7, we compute the welfare-equivalent fixed trade-cost

changes for the CMC and IMC cases. Here, the main point is that – even if the parameters

are the same across countries – changes in the compositions of trade flows have an impact
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on equivalent changes.

TABLE 8
Average Equivalent Fixed Costs Changes for Selected Countries, 2010

CMC IMC

Name GDPPC Mean tariff ετ/εf f̂ ετ/εf f̂

Guinea 1,677 1.08 13.75 3.04 4.41 1.43
Mali 1,736 1.09 15.80 4.18 5.09 1.59
Nepal 1,807 1.12 16.03 5.86 5.11 1.76
Kyrgyzstan 2,863 1.01 20.91 1.25 5.94 1.07
Moldova 3,737 1.03 21.58 1.75 5.08 1.14
Congo 4,709 1.15 14.60 8.16 4.13 1.81
Guatemala 6,293 1.05 15.94 2.05 4.25 1.21
China 9,423 1.08 21.46 5.50 4.82 1.47
Thailand 13,109 1.08 18.11 3.94 4.46 1.40
Gabon 13,151 1.15 15.21 8.86 3.89 1.75
Brazil 13,623 1.11 28.60 20.73 4.57 1.62
Malaysia 20,192 1.08 20.19 4.92 4.35 1.41
Israel 30,538 1.06 20.53 3.08 4.44 1.28
Bahamas 31,413 1.29 16.70 66.00 4.48 3.08
Italy 35,936 1.01 25.42 1.33 5.10 1.06
Germany 40,481 1.01 27.05 1.43 4.49 1.06
Saudi Arabia 41,482 1.09 19.79 5.58 5.38 1.60
United States 49,907 1.03 26.01 2.31 4.52 1.16
Norway 57,900 1.01 20.70 1.14 4.35 1.03
Bermuda 62,290 1.19 20.25 31.79 3.93 1.96

Notes : This table presents the distribution of the average country-level welfare-equivalent fixed-
trade-cost changes (f̂) for selected countries for year 2010. We set all parameters equal to the
country’s import-weighted averages. The equivalent fixed-trade-cost changes are obtained from

f̂ij = τ̂
ετ/εf
ij . To the extent possible, we choose the same countries as in Table 3.1 of Feenstra

(2010) to facilitate comparison.

We conclude by addressing a result for each of the United States and Germany. For the

United States (Germany), the MFN tariff rate is only about 3 (1) percent, which conforms

to most observers knowledge of it. While the initial value of bilateral fixed trade costs is

unknown, the lack of that knowledge is immaterial for our calculations. All that is needed

here is values of average tariff rates (or variable trade costs), the well-known (ad valorem

variable-trade-cost) “trade elasticity,” and a value for the fixed trade-cost trade elasticity.

With little empirical knowledge of the levels of fixed trade costs, our estimates of σ, γ, and θ

allow us to construct an estimate of
θ 1+γ

γ
1+γ
σ+γ

(σ−1)
− 1. Given the framework above and assuming

IMC, we find that eliminating remaining U.S. tariffs of 3 percent are welfare-equivalent to a

reduction in fixed trade costs of only 14 percent [= 100(1− 1/1.16)]. For Germany, we find

that eliminating their remaining tariffs of 1 percent are welfare-equivalent to a reduction

in fixed trade costs of 6 percent. These results make deep trade agreements much more
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attractive to pursue, with a 14 (6) percent reduction well below the reductions of 25 percent

used in earlier analyses of the Transatlantic Trade and Investment Partnership (TTIP) in

Berden et al. (2010).

7 Conclusions

This paper has offered three contributions to the international trade literature: theoretical,

empirical, and numerical. First, extending theoretically a standard (one-sector) Melitz model

of international trade to the case of increasing marginal costs, we generated a gravity

equation where the trade elasticity (θ) was magnified by one plus the marginal cost elasticity

of output, implying that the welfare gains from trade are reduced as diminishing marginal

returns interact with the Pareto shape parameter to lower the average productivity gains

from trade liberalizations.

Second, introducing a novel econometric extension of the Feenstra/Broda-Weinstein

method that controlled explicitly for firm heterogeneity, we find that increasing marginal

costs exist, with an across-industry median bilateral export supply elasticity estimate of 6.00

in our preferred specification – far below ∞, which is assumed in the benchmark models in

the trade literature assuming constant marginal costs.

Third, we provided two numerical analyses to illustrate quantitatively the relative

importance of our study. In the first counterfactual, we examined the relative quantitative

importance of increasing marginal costs for estimating the welfare gains from trade. Our

second – and more novel – counterfactual provided insight into the increasing prominence of

deep trade agreements in the world economy. Under constant marginal costs for the median

industry, the needed reduction in fixed trade costs to be equivalent in welfare-improvement to

a 4 percent reduction in ad valorem variable trade costs was 28 percent, the latter considered

“ambitious” in most CGE analyses of deep trade liberalizations. By contrast, under increasing

marginal costs, the welfare-equivalent reduction in fixed trade costs is only 13 percent for

the median industry.

We offer two suggestions for future research in this area. First, to reduce theoretical

complexity, we have omitted disposable income associated with tariff revenues; future work

could incorporate tariff revenue for computing the welfare effects of reducing tariff rates.

Second, our framework could be extended in the future to incorporate the role of tastes for

regulatory divergences addressed in Grossman et al. (2021) to better understand and poten-

tially quantify the welfare-equivalent effects of fixed versus variable trade-cost reductions.
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A Appendix A

A.1 Pricing Rule and Firm Revenue

As in Feenstra (2010), we let pij(ϕ) and qij(ϕ) denote the (free-on-board or fob) price

received and the quantity shipped by the firm at the factory gate, respectively. A firm with

productivity ϕ in country i serving country j maximizes profits by choosing the factory-gate

price pij :

max
pij

πij(ϕ) = pij(ϕ)qij(ϕ)− w̃i

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
. (A.1)

where w̃i ≡ wi/Ai. By the definition of iceberg trade costs, we have that the quantity

produced after the “iceberg melt” is equal to the quantity consumed: qij(ϕ)/τij = cij(ϕ).

Furthermore, because firms charge pij(ϕ) per unit produced, consumers pay pcij(ϕ) ≡ τijpij(ϕ)

per unit consumed. Combining these results and making use of the demand function in

equation (2) in the paper, we can express output as:

qij(ϕ) = τijcij(ϕ) = τijEjP
σ−1
j b1−σi pcij(ϕ)−σ = EjP

σ−1
j τ1−σ

ij b1−σi pij(ϕ)−σ. (A.2)

Substituting this last result into equation (A.1) yields

max
pij

πij(ϕ) = EjP
σ−1
j τ1−σ

ij b1−σi pij(ϕ)1−σ − w̃ifij −
w̃i
ϕ

[
EjP

σ−1
j τ1−σ

ij b1−σi pij(ϕ)−σ
] 1+γ

γ
.

Because each firm produces only one of a continuum of varieties, a change in pij has

a negligible effect on the price index Pj . As a result, the first order condition for the

profit-maximization problem is:

∂πij
∂pij

= (1−σ)EjP
σ−1
j b1−σi τ1−σ

ij pij(ϕ)−σ+σ

(
1 + γ

γ

)
w̃i
ϕ

(
EjP

σ−1
j b1−σi τ1−σ

ij

) 1+γ
γ
pij(ϕ)

−σ
(

1+γ
γ

)
−1

= 0,

1



Simplifying the equation above yields:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
ϕ

[
EjP

σ−1
j b1−σi τ1−σ

ij pij(ϕ)−σ
] 1
γ
.

From equation (A.2) we can replace with qij(ϕ) the last term in the squared brackets in the

equation above to obtain the optimal factory-gate price:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
ϕ
qij(ϕ)

1
γ . (A.3)

We can use this result to derive optimal firm-destination revenue as follows:

rij(ϕ) = pij(ϕ)qij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(ϕ)

1+γ
γ

ϕ
. (A.4)

As explained earlier, firms charge pij(ϕ) per unit produced such that consumers pay

pcij(ϕ) ≡ τijpij(ϕ) per unit consumed. From equation (A.3), consumers pay a price per unit

consumed of:

pcij(ϕ) ≡ τijpij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ

qij(ϕ)
1
γ . (A.5)

Finally, we note that our solution for optimal consumer price converges to the benchmark

result as γ →∞:

lim
γ→∞

pcij(ϕ) =

(
σ

σ − 1

)
w̃iτij
ϕ

.

A.2 Firm Profits

From equation (A.1), we have:

πij(ϕ) = pij(ϕ)qij(ϕ)− w̃i

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]

= rij(ϕ)− w̃ifij −
(

γ

1 + γ

)(
σ − 1

σ

)[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(ϕ)

1+γ
γ

ϕ

]

= rij(ϕ)− w̃ifij −
(

γ

1 + γ

)(
σ − 1

σ

)
rij(ϕ)

=

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
rij(ϕ)− w̃ifij

=

(
σ + γ

1 + γ

)
rij(ϕ)

σ
− w̃ifij (A.6)
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where the third line uses the definition of optimal revenue in equation (A.4). We note that

our solution for profits converges to the benchmark result as γ →∞:

lim
γ→∞

πij(ϕ) =
rij(ϕ)

σ
− w̃ifij .

A.3 Cutoff Productivity

Together, the profit function defined in equation (A.1) and the zero-profit condition πij(ϕ
∗
ij) =

0 imply that: (
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
= w̃ifij . (A.7)

Substituting into this last equation optimal revenue, as defined in equation (A.4), yields:

(
σ + γ

1 + γ

)(
1

σ

)(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(ϕ

∗
ij)

1+γ
γ

ϕ∗ij
= w̃ifij , (A.8)

which, after rearranging, yields an expression for the optimal output of the cutoff firm:

qij(ϕ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] γ
1+γ

. (A.9)

We can substitute this last result into equation (A.3) to obtain an expression for the optimal

factory-gate price for the cutoff firm:

pij(ϕ
∗
ij) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
ϕ∗ij

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] 1
1+γ

=

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

w̃i(ϕ
∗
ij)
−γ
1+γ . (A.10)

From equation (A.2), we can express firm revenue as:

rij(ϕ) = pij(ϕ)qij(ϕ) = EjP
σ−1
j b1−σi τ1−σ

ij pij(ϕ)1−σ.

Using this last result, we can express the zero-profit condition in equation (A.7) as:

(
σ + γ

1 + γ

)
EjP

σ−1
j b1−σi τ1−σ

ij pij(ϕ
∗
ij)

1−σ

σ
= w̃ifij . (A.11)
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Substituting for the factory-gate price in equation (A.11) using equation (A.10), we can

solve for the zero-cutoff-profit productivity:

w̃ifij =

(
σ + γ

1 + γ

) EjP
σ−1
j b1−σi τ1−σ

ij

{(
1+γ
γ

)(
σ
σ−1

) [(
γ

σ+γ

)
(σ − 1)fij

] 1
1+γ

w̃i(ϕ
∗
ij)
−γ
1+γ

}1−σ

σ

⇒ (ϕ∗ij)
(σ−1)

(
γ

1+γ

)
=

(
1 + γ

σ + γ

)(
σw̃ifij

EjP
σ−1
j b1−σi τ1−σ

ij

)[(
1 + γ

γ

)(
σ

σ − 1

)
w̃i

]σ−1 [( γ

σ + γ

)
(σ − 1)fij

]σ−1
1+γ

⇒ ϕ∗ij =


(

1+γ
γ

σ
σ−1 w̃i

)σ
EjP

σ−1
j b1−σi


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

ij . (A.12)

Again, when γ →∞ we obtain the benchmark result:

lim
γ→∞

ϕ∗ij =

[(
σ

σ − 1

)σ
(σ − 1)

fijw̃
σ
i

EjP
σ−1
j b1−σi

] 1
σ−1

τij =
σ1+ 1

σ−1 w̃
1+ 1

σ−1

i f
1

σ−1

ij biτij

(σ − 1)E
1

σ−1

i Pj

=

(
σ

σ − 1

)
w̃ibiτij
Pj

(
σwifij
Ej

) 1
σ−1

.

A.4 Average Profits

In our model, the relationship between the relative revenues of two firms in country i serving

the domestic market and their relative productivities is similar to – but nontrivially different

from – the constant marginal cost case. From equation (A.2) and the pricing rule (A.5), we

can express the ratio of output between any firm and the cutoff firm as follows

qij(ϕ)

qij(ϕ∗ij)
=

(
ϕ

ϕ∗ij

)σ( γ
σ+γ

)
, (A.13)

which differs from the constant marginal cost case because of the extra term in the exponent

(i.e., γ/(σ + γ)). However, when γ →∞ the result is the same as in Melitz (2003). Using

equation (A.3) to define the ratio of prices and multiplying by the ratio of quantities to

obtain relative revenues yields:

rij(ϕ)

rij(ϕ∗ij)
=

pij(ϕ)

pij(ϕ∗ij)
× qij(ϕ)

qij(ϕ∗ij)
=

 qij(ϕ)
1
γ /ϕ

qij(ϕ∗ij)
1
γ /ϕ∗ij

[ qij(ϕ)

qij(ϕ∗ij)

]
=

(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
(A.14)

where the last equality follows from equation (A.13). Note that when γ →∞, the relationship

is identical to the constant marginal cost case. The sufficient condition here for a positive

4



relationship between productivity and revenue is σ
(

1+γ
σ+γ

)
> 1, instead of the typical

assumption σ > 1.

From the zero-profit condition πij(ϕ
∗
ij) = 0 and the definition of profits in equation (A.6),

we have:

πij(ϕ
∗
ij) = 0 ⇔ rij(ϕ

∗
ij) =

(
1 + γ

σ + γ

)
σw̃ifij . (A.15)

Using this result and equation (A.14), we obtain:

rij(ϕ) =

(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
rij(ϕ

∗
ij) =

(
1 + γ

σ + γ

)(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
σw̃ifij , (A.16)

which shows clearly that firm revenue is increasing in firm productivity. Using this last result,

we can express average revenue for a country i firm selling to country j as:

rij(ϕ
∗
ij) =

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ

=

(
1 + γ

σ + γ

)(
1

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
σw̃ifij

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

=

(
1 + γ

σ + γ

)[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
σw̃ifij (A.17)

where

µij (ϕ) =


g(ϕ)

1−G(ϕ∗ij)
= θ(ϕ∗ij)

θϕ−θ−1, if ϕ ≥ ϕ∗ij ,

0 otherwise
(A.18)

is the Pareto distribution of firm productivity, and

ϕ̃ij(ϕ
∗
ij) =

[∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

]( 1
σ−1)σ+γγ

. (A.19)

defines an aggregate productivity level as a function of the cutoff level ϕ∗ij .

5



Using equation (A.19), we can define average profit for each destination market as follows:

πij(ϕ
∗
ij) =

∫ ∞
ϕ∗ij

πij(ϕ)µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

[(
σ + γ

1 + γ

)
rij(ϕ)

σ
− w̃ifij

]
µij(ϕ)dϕ

=

(
σ + γ

1 + γ

)∫ ∞
ϕ∗ij

rij(ϕ)

σ
µij(ϕ)dϕ− w̃ifij =

(
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
− w̃ifij

=


[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
− 1

 w̃ifij . (A.20)

This result is analogous to the zero-cutoff-profit condition in Melitz (2003), with πij a negative

function of ϕ∗ij . The nontrivial difference is the necessary condition that σ
(

1+γ
σ+γ

)
> 1.

By definition, the average profit of an incumbent firm is the sum of the average profits

from sales to all markets:

πi =
N∑
j=1

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
πij(ϕ

∗
ij) =

N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
πij(ϕ

∗
ij), (A.21)

where the last equality follows from the Pareto distribution assumption. This expression

includes domestic profits (i.e., when i = j). Using equation (A.20) in (A.21), we can express

average total firm profit (under the Pareto distribution assumption) as:

πi =

N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
− 1

 w̃ifij . (A.22)

We can further simplify this expression using the definition of average productivity in

equation (A.19), which implies that:

[
ϕ̃ij(ϕ

∗
ij)
](σ−1)

(
γ

σ+γ

)
=

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
θϕ−θ−1

(ϕ∗ij)
−θ dϕ

= θ(ϕ∗ij)
θ

∫ ∞
ϕ∗ij

ϕ
σ
(
γ+1
σ+γ

)
−θ−2

dϕ =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 (ϕ∗ij)

(σ−1)
(

γ
σ+γ

)
.

(A.23)
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Using this last result in equation (A.22) yields:

πi =

N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
 θ

θ − (σ − 1)
(

γ
σ+γ

)
− 1

 w̃ifij =
(σ − 1)

(
γ

σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

) N∑
j=1

(
ϕ∗ii
ϕ∗ij

)θ
w̃ifij .

(A.24)

A.5 Masses of Firms

Consumers have no taste for leisure, so the supply of labor is fixed at Li. There are three

sources of demand for labor: labor for entry costs (fe), labor for fixed trade costs (fij), and

labor for production. Therefore, the labor-market-clearing condition is given by:

Li =
M e
i f

e

Ai
+

N∑
j=1

Mij

∫ ∞
ϕ∗ij

1

Ai

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
µij(ϕ)dϕ, (A.25)

where M e
i is the mass of firms attempting to enter the industry in country i, Mij is the mass

of firms based in i that serve market j, and

µij (ϕ) =


g(ϕ)

1−G(ϕ∗ij)
= θ(ϕ∗ij)

θϕ−θ−1, if ϕ ≥ ϕ∗ij ,

0 otherwise
(A.26)

is the Pareto distribution of firms’ productivities.

Multiplying both sides of equation (A.25) by wi, yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij + w̃i

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ. (A.27)

From the optimal revenue equation (A.4), we can show that:

w̃iqij(ϕ)
1+γ
γ

ϕ
=

(
γ

1 + γ

)(
σ − 1

σ

)
rij(ϕ).

Using this result in equation (A.27) yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

) N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.28)

As in Feenstra (2010) and Redding (2011), zero expected profits imply that aggregate revenue

7



is equal to expenditure such that:

wiLi =
N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.29)

Substituting with this result for the last term on the right-hand-side of equation (A.28)

yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi

⇔
[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
wiLi = w̃iM

e
i f

e + w̃i

N∑
j=1

Mijfij . (A.30)

Substituting the left-hand-side of equation (A.30) for the first two terms on the right-hand-

side of equation (A.27) yields:

wiLi =

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
wiLi + w̃i

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ

⇔
(

γ

1 + γ

)(
σ − 1

σ

)
wiLi = w̃i

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ (A.31)

We can now solve for w̃i
∑N

j=1Mijfij . From equation (A.13), we can express the output

for any firm as a function of the output of the cutoff firm as follows:

qij(ϕ) =

(
ϕ

ϕ∗ij

) σγ
σ+γ

qij(ϕ
∗
ij). (A.32)

Using this result and the Pareto distribution, we can solve the integral on the right-hand-side

8



of equation (A.31):

∫ ∞
ϕ∗ij

q(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

[
q(ϕ∗ij)

(
ϕ
ϕ∗ij

) σγ
σ+γ

]
ϕ

1+γ
γ

µij(ϕ)dϕ

=

∫ ∞
ϕ∗ij

q(ϕ∗ij)
1+γ
γ

(
ϕ
ϕ∗ij

)σ( 1+γ
σ+γ

)

ϕ

[
θϕ−θ−1

(ϕ∗ij)
−θ

]
dϕ

= q(ϕ∗ij)
1+γ
γ

(
1

ϕ∗ij

)σ 1+γ
σ+γ
−θ

θ

∫ ∞
ϕ∗ij

ϕ
γ

σ+γ
(σ−1)−(θ+1)

dϕ

= q(ϕ∗ij)
1+γ
γ

(
1

ϕ∗ij

)σ 1+γ
σ+γ
−θ [

θ

θ − γ
σ+γ (σ − 1)

][(
1

∞

)θ− γ
σ+γ

(σ−1)

− (ϕ∗ij)
γ

σ+γ
(σ−1)

]

=

[
θ

θ − γ
σ+γ (σ − 1)

]
q(ϕ∗ij)

1+γ
γ (ϕ∗ij)

γ
σ+γ

(σ−1)−σ 1+γ
σ+γ

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 q(ϕ∗ij) 1+γ

γ

ϕ∗ij
. (A.33)

Importantly, note that, for a positive integral, we require only that θ > γ
σ+γ (σ − 1) and not

θ > σ − 1, as in the standard constant marginal cost Melitz models.

Rearranging equation (A.9), we can show that:

qij(ϕ
∗
ij)

1+γ
γ

ϕ∗ij
=

(
γ

σ + γ

)
(σ − 1)fij .

Using this result in the equation just above it yields:

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 fij , (A.34)

which implies that:

w̃i

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃i N∑
j=1

Mijfij . (A.35)

9



Substituting with this last result into equation (A.31) yields:

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃i N∑
j=1

Mijfij

⇒ w̃i

N∑
j=1

Mijfij =

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

wiLi. (A.36)

Substituting this result into equation (A.35) yields:

w̃i

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi. (A.37)

We can now solve for M e
i . Substituting equations (A.36) and (A.37) into equation (A.27),

and eliminating out the wi, yields:

Li =
1

Ai
M e
i f

e +
1

Ai

N∑
j=1

Mijfij +
1

Ai

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ

=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li +

(
γ

1 + γ

)(
σ − 1

σ

)
Li

=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

)1 +
θ − γ

σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

)θ
(

γ
σ+γ

)
(σ − 1) + θ − γ

σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
=
M e
i f

e

Ai
+

(θ − 1)
(

γ
σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
Li

10



which implies that:

M e
i =

1−
(θ − 1)

(
γ

σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
 AiLi

fe

=

θσ
(

1+γ
σ+γ

)
− (θ − 1)

(
γ

σ+γ

)
(σ − 1)− θ

θσ
(

1+γ
σ+γ

)
 AiLi

fe

=

(
1

θσ

)(
σ + γ

1 + γ

)(
θσ + θσγ − θσγ + θγ + γσ − γ − θγ − θσ

σ + γ

)
AiLi
fe

=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi
θfe

. (A.38)

We now solve for Mii. As standard, we assume a fraction δ of existing firms Mii exit the

industry. In a steady state equilibrium, the mass of new entrant (M e
i ) must replace firms hit

by the exogenous shock and forced to exit the industry. Hence, in a steady state:

[1−G(ϕ∗ii)]M
e
i = δMii (A.39)

where [1−G(ϕ∗ii)] = (ϕ∗ii)
−θ is the probability of successful entry. It follows that:

Mii =
[1−G(ϕ∗ii)]M

e
i

δ
=

M e
i

δ(ϕ∗ii)
θ

=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(ϕ∗ii)
θ

(A.40)

Finally, we can solve for the mass of exporting firms Mij . A successful entrant in country-i

will export to country j if it is is productive enough to be profitable in the foreign country.

This implies that:

Mij =

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
Mii =

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(ϕ∗ij)
θ
. (A.41)

A.6 Price Index

In this section, we solve for the price index. Substituting equation (A.2) into optimal pricing

rule (A.5) we obtain:
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pcij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ

qij(ϕ)
1
γ

=

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ

[
EjP

σ−1
j b1−σi pcij(ϕ)−σ

] 1
γ

=

[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i (A.42)

Substituting this result into the definition of the price index

Pj =

[∫
ν∈Ωj

b1−σi pcj(ν)1−σdν

] 1
1−σ

, (A.43)

and rearranging, we obtain:

P 1−σ
j =

∫
ν∈Ωj

b1−σi pcj(ν)1−σdν =
∑
i

Mij

∫ ∞
ϕ∗ij

b1−σi pcij(ϕ)1−σµij(ϕ)dϕ

=
∑
i

Mij

∫ ∞
ϕ∗ij

{[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i

}1−σ

µij(ϕ)dϕ

=
∑
i

Mij

{[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i

}1−σ ∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

=
∑
i

Mij


[(

1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
ϕ∗ij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i


1−σ  θ

θ − (σ − 1)
(

γ
σ+γ

)


=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mijb
1−σ
i [pcij(ϕ

∗
ij)]

1−σ

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mijτ
1−σ
ij b1−σi [pij(ϕ

∗
ij)]

1−σ. (A.44)

We can use the productivity cutoff in equation (A.12) and the mass of firms in equation

(A.41) to obtain an expression also for the price index Pj as a function of the endogenous

wages and parameters of the model, given in equation (A.87) below.
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A.7 Trade Flows

Using the pricing rule (A.3), the result in equation (A.34), and equation (A.41) for the mass

of firms, we can express trade flows as:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ = Mij

∫ ∞
ϕ∗ij

pij(ϕ)qij(ϕ)µij(ϕ)dϕ

= Mij

∫ ∞
ϕ∗ij

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
ϕ
qij(ϕ)

1+γ
γ µij(ϕ)dϕ

= Mij

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ

= Mij

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃ifij
=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(ϕ∗ij)
θ

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 wifij
Ai

=

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 wiLifij
δfe(ϕ∗ij)

θ
. (A.45)

By definition, aggregate expenditure in country j is given by:

Ej =
∑
k

Xkj =

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 1

δfe

∑
k

wkLkfkj(ϕ
∗
kj)
−θ. (A.46)

Therefore, the share of country j’s expenditure on goods supplied by country i is given by:

λij ≡
Xij

Ej
=

wiLifij(ϕ
∗
ij)
−θ∑N

k=1wkLkfkj(ϕ
∗
kj)
−θ
. (A.47)

Adapting equation (A.12), we know:

ϕ∗kj =


(

1+γ
γ

σ
σ−1 w̃k

)σ
EjP

σ−1
j b1−σi


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fkj

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

kj .

Substituting this equation for ϕ∗kj and equation (A.12) for ϕ∗ij into equation (A.47), we
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obtain bilateral trade from i to j as a share of j’s expenditures (λij):

λij =

wiLifij

w̃(
1+γ
γ

)
( σ
σ−1)

i b
1+γ
γ

i τ
1+γ
γ

ij f

(
1

γ
σ+γ (σ−1)

)
ij

−θ

∑N
k=1wkLkfkj

w̃(
1+γ
γ

)
( σ
σ−1)

k b
1+γ
γ

k τ
1+γ
γ

kj f

(
1

γ
σ+γ (σ−1)

)
kj

−θ

=
A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

. (A.48)

A.8 Wage Rates

We now determine aggregate revenue in equilibrium. First, total payments to production

workers, which we denote Lpi , must be equal to the difference between aggregate revenue and

aggregate profit such that wiL
p
i = Ri −Πi, where Πi ≡Miiπi. Second, in equilibrium, the

mass of successful entrants must be equal to the mass of firms forced to exit the industry. This

aggregate stability condition requires that [1−G(ϕ∗ij)]M
e
i = δMii. Combining this last result

with the free entry condition (A.53) (provided later) implies that total payments to labor used

in entry equal total profits: wiL
e
i = wiM

e
i f

e = Πi. It follows that aggregate revenue, which

is the sum of total payments to labor and profits, is equal to payroll Ri = wiL
p
i + Πi = wiLi.

The equilibrium wage rate (wi) in each country can be determined from the requirement

that total revenue equals total expenditure on goods produced there:

wiLi =

N∑
j=1

λijwjLj .

Substituting in equation (A.48) yields the following system of N equations (one for each of

N countries):

wiLi =

N∑
j=1

 A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ 1+γ

γ

k τ
−θ

(
1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

wjLj
(A.49)

Equation (A.49) implies a system of N equations in the N unknown wage rates in each

country, wi. Note that this equation takes the same form as equation (3.14) on p. 1734 of
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Alvarez and Lucas (2007). Using equation (A.49), we can define the following excess demand

system:

Ξ(w) =
1

wi


N∑
j=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ 1+γ

γ

i τ
−θ

(
1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ 1+γ

γ

k τ
−θ

(
1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

− wiLi


(A.50)

where w denotes the vector of wage rates across countries.

Proposition 1. There exists a unique wage-rate vector w ∈ RN++ such that Ξ(w) = 0.

Proof. Note that Ξ(w) has the following properties:

1. Ξ(w) is continuous (by assumption on the parameters).

2. Ξ(w) is homogenous of degree zero.

3. w · Ξ(w) = 0 for all w ∈ RN++ (Walras Law).

4. There exists a constant s > 0 such that Ξi(w) > −s for each country i and all

w ∈ RN++.

5. If wm → w0 where w0 6= 0 and w0
i = 0 for some country i, then maxj{Ξj(w)} → ∞.

6. Ξ(w) satisfies the gross substitutes property

∂Ξi(w)

∂wj
> 0, i 6= j, and

∂Ξi(w)

∂wi
< 0, ∀w ∈ RN++.

Under these conditions, Propositions 17.C.1 and 17.F.3 of Mas-Colell et al. (1995) or

Theorems 1-3 of Alvarez and Lucas (2007) hold, such that there exists a unique vector of

wage rates w ∈ RN++ that satisfies the clearing conditions Ξ(w) = 0.

A.9 Free Entry

There is an unbounded set of potential entrants in the industry. To enter the industry, firms

must incur a fixed entry cost of fe units of labor. That sunk entry cost provides the firm

with a blue print for a unique variety and also reveals the firm’s productivity, ϕ, a random

draw from a common distribution G(ϕ). Once the fixed entry cost is paid, firms can begin

production.

The value of a successful entrant with productivity ϕ is equal to the discounted sum of

lifetime profits. Following Melitz (2003), we assume that each period there is a probability

15



δ ∈ (0, 1) that an incumbent firm will be hit by an adverse shock and be forced to exit the

industry. In that case, the value of a successful entrant in the industry can be expressed as:

Vi(ϕ) =

∞∑
t=1

(1− δ)tπit(ϕ) =
πi(ϕ)

δ
, (A.51)

where the second equality follows from the fact that profits are constant throughout the

lifetime of the firm, i.e., πit(ϕ) = πi(ϕ). Therefore, the value of entry as a function of

productivity is given by:

Vi(ϕ) = max

{
0,
πi(ϕ)

δ

}
. (A.52)

Firms with productivity above the domestic cutoff, ϕ∗ii, will generate enough variable profits

to cover the fixed costs. As a result, they stay in the industry and earn a lifetime profit

proportional to their per-period profits. Firms with productivity lower than the domestic

cutoff would earn negative profits if they remain in the industry. Hence, they prefer to exit

the industry and get a null return.

In a free entry equilibrium, the expected value of entry, V e
i , must be equal to the cost of

entry such that:

V e
i = [1−G(ϕ∗ii)]

πi
δ

= w̃if
e. (A.53)

The expected value of entry is defined as the product of the probability of successful entry,

1−G(ϕ∗ii), and the lifetime profits of the average incumbent firm, πi/δ. The cost of entry is

defined as the product of w̃i and the fixed entry cost, fe, defined in units of labor.

By definition, the average profit of an incumbent firm is the sum of the average profits

from sales to each market (including the domestic market) multiplied by the probability of

entering each market conditional on producing for the domestic market:

πi =
N∑
j=1

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
πij(ϕ

∗
ij). (A.54)

To obtain an analytical solution, we follow the literature and assume that the productivity

distribution is Pareto, such that G(ϕ) = 1 − ϕ−θ. We can combine the zero-cutoff-profit

condition πij(ϕ
∗
ij) = 0, the optimal pricing function in equation (6), and the definition of

profits in equation (5), to express average total firm profit as:

πi =
(σ − 1) γ

σ+γ

θ − (σ − 1) γ
σ+γ

N∑
j=1

(
ϕ∗ii
ϕ∗ij

)θ
w̃ifij . (A.55)

Substituting this last result for average profits into equation (A.53), we obtain an expression
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for the free-entry condition that depends only on the productivity cutoffs and parameters of

the model:

V e
i =

(σ − 1) γ
σ+γ

θ − (σ − 1) γ
σ+γ

N∑
j=1

fij
(ϕ∗ij)

θ
= δfe, (A.56)

where the wage rates have canceled in the expression above. This result shows that the value

of entry is proportionate to fixed entry costs (fe).

A.10 General Equilibrium

As in Bernard et al. (2011), we determine general equilibrium using the recursive structure

of the model. The system of equations (A.50) determines a unique equilibrium wage in

each country (wi). Furthermore, the mass of entrants M e
i is determined as a function of

parameters in equation (A.38). With these two equilibrium components, we can solve for all

the other endogenous variables as follows. The price index Pj follows from the wage rate

as explained in section A.6. The productivity cutoffs then follow from equation (9), the

wage rates, the price indexes, and that Ei = Ri = wiLi in equilibrium. The mass of firms in

each country i serving each destination country j, Mij , follows from equation (11) and the

productivity cutoffs. Finally, the trade shares λij follow directly from equation (A.47), the

wage rates, and the productivity cutoffs. This completes the characterization of the general

equilibrium.

A.11 Structural Gravity

In this section, we show how to derive the structural gravity equation from our theoretical

model. Substituting equation (A.12) for the ZCP productivity threshold in the solution for

bilateral trade flows in equation (A.45), we can solve for:

Xij = BA
θ
(

1+γ
γ

)
( σ
σ−1)

i Li

(
EjP

σ−1
j

)( 1+γ
γ

)
( θ
σ−1)

w
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ
1+γ
γ

1+γ
σ+γ (σ−1)

ij .

(A.57)

where B is a constant and a function of parameters σ, γ, θ, δ, and fe. By the definition of

revenue, it follows that:

Ri =

N∑
j=1

Xij = BA
θ
(

1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i Liw

1−θ
(

1+γ
γ

)
( σ
σ−1)

i Π̃
−θ

(
1+γ
γ

)
i (A.58)
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where

Π̃
−θ

(
1+γ
γ

)
i ≡ Π̃−ετi =

N∑
j=1

(
E

1
σ−1

j Pj

)θ( 1+γ
γ

)
φij ≡

N∑
j=1

(
E

1
σ−1

j Pj

)ετ
φij (A.59)

and

φij ≡ τ
−θ

(
1+γ
γ

)
ij f

1−
θ
1+γ
γ

1+γ
σ+γ (σ−1)

ij .

Rearranging equation (A.58) to solve for RiΠ̃
ετ
i (where ετ ≡ θ 1+γ

γ ) yields:

RiΠ̃
ετ
i = BA

θ
(

1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i Liw

1−θ
(

1+γ
γ

)
( σ
σ−1)

i . (A.60)

Substituting the LHS term from above for the RHS term into equation (A.57) yields:

Xij =
Ri

Π̃−ετi

(
E

1
σ−1

j Pj

)ετ
φij . (A.61)

We can define Φ̃j such that:

EjΦ̃
ετ
j ≡

(
E

1
σ−1

j Pj

)ετ
. (A.62)

Substituting the LHS term for the RHS term in equation (A.61) yields:

Xij =
Ri

Π̃−ετi

Ej

Φ̃j
−ετ φij . (A.63)

Using the definition of Φ̃j in equation (A.62), we can rewrite the multilateral resistance term

Π̃i using equation (A.59) as follows:

Π̃−ετi =
N∑
j=1

Ej

Φ̃−ετj

φij . (A.64)

Finally, by definition of expenditure and equation (A.63) it follows that:

Ej =

N∑
i=1

Xij =
N∑
i=1

Ri

Π̃−ετi

Ej

Φ̃−ετj

φij . (A.65)

This result implies that:

Φ̃−ετj =
N∑
i=1

Ri

Π̃−ετi

φij . (A.66)
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If we define Πi ≡ Π̃−ετi and Φj ≡ Φ̃−ετj , the system of equations (A.63), (A.64), and (A.66)

forms a structural gravity-equation equivalent to equation (2) in Head and Mayer (2014).

A.12 Elasticity of Trade with respect to Ad Valorem Variable Trade

Costs

First, we determine the elasticity of trade with respect to ad valorem variable trade costs.

By definition, aggregate bilateral trade flows are given by:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ = Mij [1−G(ϕ∗ij)]
−1

∫ ∞
ϕ∗ij

rij(ϕ)g(ϕ)dϕ. (A.67)

It follows that:

∂Xij

∂τij
=
∂Mij

∂τij

Xij

Mij
+Mij [1−G(ϕ∗ij)]

−2
∂G(ϕ∗ij)

∂ϕ

∂ϕ∗ij
∂τij

[1−G(ϕ∗ij)]
Xij

Mij

−Mij [1−G(ϕ∗ij)]
−1rij(ϕ

∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂τij

+Mij [1−G(ϕ∗ij)]
−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij
g(ϕ)dϕ. (A.68)

From this last result, it is straightforward to define the elasticity as follows:

ετ ≡ −
∂Xij

∂τij

τij
Xij

=
∂Mij

∂τij

Xij

Mij

τij
Xij

+Mij [1−G(ϕ∗ij)]
−2
∂G(ϕ∗ij)

∂ϕ

∂ϕ∗ij
∂τij

[1−G(ϕ∗ij)]
Xij

Mij

τij
Xij

−Mij
τij
Xij

[1−G(ϕ∗ij)]
−1rij(ϕ

∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂τij

+Mij
τij
Xij

[1−G(ϕ∗ij)]
−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij
g(ϕ)dϕ

= −

{
∂Mij

∂τij

τij
Mij︸ ︷︷ ︸

extensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂τij

τij
ϕ∗ij︸ ︷︷ ︸

compositional

+

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij

τij
Xij/Mij

µij(ϕ)dϕ︸ ︷︷ ︸
intensive

}
, (A.69)

where the last equality follows from simplifying and rearranging terms.

We now calculate each component of equation (A.69) separately. From equation (9), we

have:
∂ϕ∗ij
∂τij

=

(
1 + γ

γ

)
ϕ∗ij
τij

, (A.70)
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which implies that:
∂ϕ∗ij
∂τij

τij
ϕ∗ij

=
1 + γ

γ
. (A.71)

Using equations (11) and (A.70), we have:

∂Mij

∂τij
= −θ

(
Mij

ϕ∗ij

)
∂ϕ∗ij
∂τij

= −θ

(
Mij

ϕ∗ij

)(
1 + γ

γ

)
ϕ∗ij
τij

= −θ
(

1 + γ

γ

)
Mij

τij
.

This last result implies that:

∂Mij

∂τij

τij
Mij

= −θ
(

1 + γ

γ

)
. (A.72)

Under the Pareto distribution assumption it follows that:

g(ϕ∗ij)ϕ
∗
ij

1−G(ϕ∗ij)
=
θ(ϕ∗ij)

−θ−1ϕ∗ij
(ϕ∗ij)

−θ = θ, (A.73)

where the last equality uses equation (A.70).

Next, using the solution for the equilibrium mass of firms in equation (11) and cutoff-firm

revenue:

rij(ϕ
∗
ij) =

(
1 + γ

σ + γ

)
σw̃ifij , (A.74)

which, as shown in section 4 of Appendix A, is obtained from the zero profit condition, we

can show that:

1−
rij(ϕ

∗
ij)

Xij/Mij
= 1− 1

θ

[
θ −

(
γ

σ + γ

)
(σ − 1)

]
=

1

θ

(
γ

σ + γ

)
(σ − 1). (A.75)

Finally, as shown in section A.4, it is possible to express firm revenue as a function of

the cutoff productivity as follows:

rij(ϕ) =

(
ϕ

ϕ∗ij

)(σ−1) γ
σ+γ

rij(ϕ
∗
ij) =

(
ϕ

ϕ∗ij

)(σ−1) γ
σ+γ

σw̃ifij .

Using this result, we get:

∂rij(ϕij)

∂τij
= −

[
σ

(
1 + γ

σ + γ

)
− 1

]
rij(ϕij)

ϕ∗ij

∂ϕ∗ij
∂τij

= −(σ − 1)

(
1 + γ

σ + γ

)
rij(ϕij)

τij
. (A.76)
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It then follows that:∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij

τij
Xij/Mij

µij(ϕ)dϕ = −
∫ ∞
ϕ∗ij

(σ − 1)

(
1 + γ

σ + γ

)
rij(ϕij)

τij

τij
Xij/Mij

µij(ϕ)dϕ

= −(σ − 1)

(
1 + γ

σ + γ

)(
1

Xij

)
Mij

∫ ∞
ϕ∗ij

rij(ϕij)µij(ϕ)dϕ

= −(σ − 1)

(
1 + γ

σ + γ

)
Xij

Xij
= −(σ − 1)

(
1 + γ

σ + γ

)
. (A.77)

Substituting results (A.71), (A.72), (A.73), (A.75) and (A.77) into equation (A.69), we get:

ετ = −

−θ
(

1 + γ

γ

)
︸ ︷︷ ︸

extensive

+ (1− σ)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

intensive

+ (σ − 1)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

compositional


= θ

(
1 + γ

γ

)
= θ

(
1 +

1

γ

)
,

which is the result in the paper.

A.13 Elasticity of Trade with respect to Fixed Trade Costs

The computations for the fixed-trade-cost trade elasticity are similar to those for the ad

valorem variable-trade-cost trade elasticity. From equation (A.67), we get:

∂Xij

∂fij
=
∂Mij

∂fij

Xij

Mij
+Mij [1−G(ϕ∗ij)]

−2
∂G(ϕ∗ij)

∂ϕ

∂ϕ∗ij
∂fij

[1−G(ϕ∗ij)]
Xij

Mij

−Mij [1−G(ϕ∗ij)]
−1rij(ϕ

∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂fij

(A.78)

+Mij [1−G(ϕ∗ij)]
−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂fij
g(ϕ)dϕ,

such that

εf ≡ −
∂Xij

∂fij

fij
Xij

= −

{
∂Mij

∂fij

fij
Mij︸ ︷︷ ︸

extensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂fij

fij
ϕ∗ij︸ ︷︷ ︸

compositional

+
fij

Xij/Mij

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂fij
µij(ϕ)dϕ︸ ︷︷ ︸

intensive

}
. (A.79)
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Some of the “components” of this last result are the same as those in equation (A.69). So,

we calculate only the new components of equation (A.79). First, from equation (9), we have:

∂ϕ∗ij
∂fij

fij
ϕ∗ij

=

(
σ + γ

γ

)(
1

σ − 1

)
. (A.80)

Using this result and equations (A.73) and (A.75), it follows that the compositional margin

defined in (A.79) simplifies to 1:

g(ϕ∗ij)ϕ
∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂fij

fij
ϕ∗ij

= θ

[
1− 1 +

1

θ

(
γ

σ + γ

)
(σ − 1)

](
σ + γ

γ

)(
1

σ − 1

)
= 1. (A.81)

Next, using the definition of firm-level revenue in equation (A.76), we can show that:

∂rij(ϕij)

∂fij
= 0. (A.82)

This result implies that the intensive-margin component of the elasticity in (A.79) is equal

to 0. Finally, from the equilibrium mass of firms in equation (11), we have:

∂Mij

∂fij
= −θ

(
Mij

ϕ∗ij

)
∂ϕ∗ij
∂fij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)(
Mij

ϕ∗ij

)
ϕ∗ij
fij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
Mij

fij
.

This last result implies that:

∂Mij

∂fij

fij
Mij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
. (A.83)

Substituting equations (A.81), (A.82), and (A.83) into equation (A.69), we get:

εf = −

− θ
γ

σ+γ (σ − 1)︸ ︷︷ ︸
extensive

+ 0︸︷︷︸
intensive

+ 1︸︷︷︸
compositional

 =
θ

γ
σ+γ (σ − 1)

− 1 =
θ 1+γ

γ
1+γ
σ+γ (σ − 1)

− 1,

which is the result in the paper.
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A.14 Welfare

In the model, welfare (Wj) is equal to purchasing power. Letting the consumption aggregate

Cj ≡ Uj , then by definition of the price index it follows that:

PjCj = wj ⇔ Wj =
wj
Pj
, (A.84)

where P is the ideal price index. To compute welfare, we need to define each term of Wj .

We begin with the price index.

From the zero-profit condition πij(ϕ
∗
ij) = 0 and the definition of profits in equation (A.6),

we have: (
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
= w̃ifij .

Substituting demand function (A.2) into the equation above for rij(ϕ
∗
ij) yields:

(
σ + γ

1 + γ

)
EjP

σ−1
j b1−σi pij(ϕ

∗
ij)

1−σ

σ
= w̃ifij ⇒ b1−σi pij(ϕ

∗
ij)

1−σ =

(
1 + γ

σ + γ

)
σw̃ifij

EjP
σ−1
j

.

(A.85)

Substituting this result into equation (A.44), we obtain:

P 1−σ
j =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

EjP
σ−1
j

∑
i

Mijw̃ifij

⇔ 1 =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

Ej

∑
i

Mijw̃ifij . (A.86)

Substituting in the equation above with the mass of firms from equation (A.41) yields:

1 =

[
θ

θ − (σ − 1) γ
σ+γ

](
1 + γ

σ + γ

)
σ

Ej

∑
i

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

wi
Ai
fij

θδfe(ϕ∗ij)
θ

which simplifies to:

1 =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
E−1
j

∑
i

wiLifij
δfe

(ϕ∗ij)
−θ.
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Substituting in equation (A.12) for ϕ∗ij in the equation above yields:

1 =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
E−1
j

δfe

∑
i

wiLifij



(

1+γ
γ

σ
σ−1 w̃i

)σ
EjP

σ−1
j b1−σi


1+γ
γ
σ−1 [

γ

σ + γ
(σ − 1)fij

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

ij


−θ

.

Solving the equation above for P
−θ 1+γ

γ

j on the LHS yields:

P
−θ

(
1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

N∑
i=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

i wiLiw
−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

where

D =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
(δfe)−1

[(
1 + γ

γ

)(
σ

σ − 1

)(
γ

σ + γ

)
(σ − 1)

] −θ
γ

σ+γ (σ−1)

is a constant that depends on parameters σ, γ, θ, δ and fe. It will be convenient to rewrite

the equation above as:

P
−θ

(
1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

N∑
k=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

k wkLkw
−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj .

(A.87)

Having defined the first component of welfare (Pj), we turn to the second component:

wage rates. From equation (A.48), we have:

λjj =
wjLjw

−θ
(

1+γ
γ

)
( σ
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

∑N
k=1wkLkw

−θ
(

1+γ
γ

)
( σ
σ−1)

k A
θ
(

1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

where τjj = 1, as standard in the literature. Dividing both sides by λjj and multiplying both
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sides by w
θ 1+γ

γ

j yields:

w
θ
(

1+γ
γ

)
j =

(
1

λjj

)
wjLjw

−θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

∑N
k=1wkLkw

−θ
(

1+γ
γ

)
( σ
σ−1)

k A
θ
(

1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
γ

σ+γ (σ−1)

kj

,

(A.88)

Multiplying equations (A.87) and (A.88) yields:

W
θ
(

1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

(
1

λjj

)
wjLjw

−θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj .

Since Ej = wjLj , then:

W
θ
(

1+γ
γ

)
j = D

(
1

λjj

)
L
θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

or

W
θ
(

1+γ
γ

)
j = D

1

θ( 1+γ
γ )λ

− 1

θ( 1+γ
γ )

jj L
1

σ−1

j A
σ
σ−1

j b−1
j f

(
1

1+γ

)
( γθ−

σ+γ
σ−1 )

jj .

Hence, for any foreign shock (i.e., holding constant Lj , Aj , bj and fjj), then:

Ŵj = λ̂
− 1

θ( 1+γ
γ )

jj (A.89)

where the hat denotes the gross change, i.e., W ′j/Wj and λ′jj/λjj , where W ′j and λ′jj denote

the post-shock values of Wj and λjj , respectively.

Feenstra (2010) insightfully shows that one can interpret the gains from trade in a Melitz

model as a gain due to increase in “export variety” or “average productivity.” Importantly,

the gain reflects the increase in real wage rates due to the productivity improvement as new

exporting firms drive out less productive domestic firms, raising average productivity.45

To make this point, Feenstra (2010) derives a transformation curve between masses of

varieties for sale to different markets, Mij , and shows that trade increases real income by

allowing the economy to reach more productive output combinations. As shown below in

section 15 of Appendix A, we can solve for the concave transformation frontier between the

45As Feenstra (2010) notes, because the gains from new imported varieties exactly offset the losses from
fewer domestic varieties (under the Pareto distribution assumption), there are no further gains from trade on
the consumption side.
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(output-adjusted) masses of varieties, M̃ij , as follows:

Li = k1(fe)
1

1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

, (A.90)

where k1 > 0 is a constant that depends only on parameters of the model (with the exact

definition of k1 provided later in section A.15). The economically important difference

between our result under IMC and that in Feenstra (2010) under CMC is that the constant-

elasticity-of-transformation (CET) in our model is η = θ
(

σ
σ−1

)(
1+γ
γ

)
− 1 > 0, whereas

Feenstra’s CET is ω = θ
(

σ
σ−1

)
− 1 > 0. All else equal, η ≥ ω because (1 + γ)/γ ≥ 1, with

strict inequality when γ <∞. Thus, with IMC, the CET curve will be flatter than under

CMC as long as γ <∞. In fact, we can show:

η = ω + (ω + 1)/γ,

which reveals the degree to which the CET under IMC is larger. As γ declines from ∞, η

increases relative to ω. As γ approaches ∞, η = ω, as in Feenstra (2010).

In section 15 of Appendix A below, we show that aggregate income in our model is a

linear function of the (output-adjusted) masses of varieties:

Ri =
N∑
j=1

AijM̃ij , (A.91)

where, to be consistent (and tractable) with Feenstra (2010), the Aijs now denote demand-

shift parameters that depend only on parameters of the model; in the remainder of this

section and in the next, we omit any TFP shocks (labeled previously A) and preference

shocks (labeled previously b). As explained in Feenstra (2010), the welfare maximizing

combination of (output-adjusted) masses of varieties can be obtained by maximizing income

in equation (A.91) subject to the transformation curve in equation (A.90).

We can now evaluate the impact of trade liberalization on welfare. For simplicity, consider

the two-country case illustrated in Figure A.1 (an extended version of Figure 5 in Feenstra

(2010)). As shown in Figure A.1, our transformation curve (the dashed bowed-out line

from point A to point B) is flatter compared to that of Feenstra (2010) under CMC (the

solid bowed-out line from point A to point B). Point A represents the equilibrium under

autarky for both cases. At that point, the mass of (output-adjusted) varieties for sale in

the domestic market is positive, M̃ > 0, and the mass of (output-adjusted) varieties for sale

in the foreign market is null, M̃x = 0. Autarky income is represented by the straight line

closest to the origin, starting at point A. By opening up to trade, the economy can increase
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Figure A.1: CET Frontier with Increasing Marginal Costs and Constant Marginal Costs

its mass of (output-adjusted) varieties for sale in the foreign market and reduce its mass of

(output-adjusted) varieties for sale in the domestic market. Under CMC, the gain in income

is shown by the shift outward of the straight line through point A to the straight line tangent

to the (solid-line) transformation curve at point C. Under IMC, the transformation curve is

flatter which leads to smaller gains in income, as shown by the shift outward of the straight

line through point A to the straight line tangent to the (dashed-line) transformation curve

at point D. The difference between the income line tangent to point C and the income line

tangent to point D represents the welfare diminution effect associated with IMC.

The diminished welfare gains due to IMC can also be interpreted mathematically in

the context of Feenstra (2010). In a Melitz model with constant marginal costs, the change

in welfare (Ŵj) from a reduction in variable trade costs is proportionate to the change in

average productivity ( ˆ̃ϕij) and the change in the number of varieties (M̂ij), cf., Melitz (2003),

equation (17). Feenstra (2010) shows also that the change in welfare (Ŵj) can be simplified

further to be proportionate to the change in output of the zero-cutoff-profit firm (qij(ϕ̂
∗
ij)),

cf. Feenstra (2010). As seen in equation (8) in the paper, under IMC the output of the cutoff

productivity firm is proportional to the cutoff productivity according to:

qij(ϕ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] γ
1+γ

.

Because a property of the Pareto distribution is that the average productivity, ϕ̃ij , is

proportionate to cutoff productivity, ϕ∗ij , changes in welfare will be proportional to (ϕ̂∗ij)
γ

1+γ .

Under CMC, there is a linear relationship between the productivity cutoff and the output, i.e.,

as γ approaches ∞, γ
1+γ approaches 1. However, when we introduce IMC, this relationship
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becomes concave. As a result, a given change in ϕ∗ij has a smaller effect on output, qij(ϕ
∗
ij),

under IMC than under CMC. This is the intuition underlying the “welfare diminution effect”

from increasing marginal costs.

A.15 Constant Elasticity of Transformation

In this section, we derive the constant-elasticity-of-transformation (CET) function for our

model. As a first step, we define aggregate revenue in our model. Using equations (A.45),

(A.46), and (A.47):

Ri =

N∑
j=1

Xij =

N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.92)

In our model, we can solve for pij(ϕ) = qij(ϕ)−
1
σ τ

1−σ
σ

ij P
σ−1
σ

j (wjLj)
1
σ . Since rij(ϕ) =

pij(ϕ)qij(ϕ) and assuming aggregate revenue (Ri) equals aggregate income (wiLi), we

can write:

Ri = wiLi =
N∑
j=1

AijMij

∫ ∞
ϕ∗ij

qij(ϕ)
σ−1
σ µij(ϕ)dϕ =

N∑
j=1

AijM̃ij (A.93)

where, analogous to Feenstra (2010):

Aij = τ
1−σ
σ

ij Pj

(
wjLj
Pj

) 1
σ

(A.94)

and we denote M̃ij as the “output-adjusted” mass of varieties produced in country i and

sold in market j:

M̃ij = Mij

∫ ∞
ϕ∗ij

qij(ϕ)
σ−1
σ µij(ϕ)dϕ. (A.95)

In the context of our model, we know from in section 4 of Appendix A that:

ϕ̃ij =

[∫ ∞
ϕ∗ij

ϕ
γ

γ+σ
(σ−1)

µij(ϕ)dϕ

] 1
γ

γ+σ (σ−1)

(A.96)

is a measure of average productivity (ϕ̃ij). Using equation (A.13) from section 4 of Appendix

A, we can write:

qij(ϕ) =

(
ϕ

ϕ̃ij

)σ γ
γ+σ

qij(ϕ̃ij). (A.97)
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Using equation (A.97) in the middle equality in equation (A.93) yields:

wiLi =

N∑
j=1

AijMij

∫ ∞
ϕ∗ij

[(
ϕ

ϕ̃ij

)σ γ
γ+σ

qij(ϕ̃ij)

]σ−1
σ

µij(ϕ)dϕ

=
N∑
j=1

AijMij [qij(ϕ̃ij)]
σ−1
σ ϕ̃

(1−σ) γ
γ+σ

ij

∫ ∞
ϕ∗ij

ϕ
(σ−1) γ

γ+σµij(ϕ)dϕ. (A.98)

Since the integral term in the equation above simplifies to ϕ̃
(σ−1) γ

γ+σ

ij , then:

wiLi =

N∑
j=1

AijMij [qij(ϕ̃ij)]
σ−1
σ =

N∑
j=1

AijM̃ij (A.99)

where

M̃ij = Mij [qij(ϕ̃ij)]
σ−1
σ .

Using the equations for output and average productivity (A.9) and (A.23), respectively, and

inverting equation (A.41) to solve for ϕ∗ij as a function of Mij , we find:

M̃ij = k0f
γ
γ+1

σ−1
σ

ij

(
fe

Li

)− γ
1+γ

σ−1
θσ

M
1− γ

γ+1
σ−1
θσ

ij , (A.100)

where k0 is a constant that depends only on parameters σ, γ, θ, and δ:

k0 =

[
θ

θ − (σ − 1) γ
γ+σ

] [(
γ

γ + σ

)
(σ − 1)

]( γ
1+γ

)
(σ−1

σ ) [( γ

1 + γ

)(
σ − 1

σ

)
1

θδ

] 1
θ

(
γ

1+γ

)
(σ−1

σ )
.

We invert equation (A.100) to solve for the mass of firms as a function of the adjusted

mass:

Mij =

(
1

k0

) 1+η
η

f
− θ
η

ij

(
fe
Li

) 1
η

M̃
1+η
η

ij (A.101)

where η = θ
(

1+γ
γ

)(
σ
σ−1

)
− 1.

We can use equation (A.36), from section 5 of Appendix A, to express country i’s labor

stock as a linear transformation function of masses Mij :

Li =

(
1 + γ

γ

)(
σ

σ − 1

)[
θ(σ − 1) γ

γ+σ

θ − (σ − 1) γ
γ+σ

]
N∑
j=1

Mijfij . (A.102)

Substituting equation (A.101) into equation (A.102) yields country i’s labor stock as a
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concave CET function of the “output-adjusted” masses:

Li = k1(fe)
1

1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

(A.103)

which is similar – but not identical – to (corrected) equation (3.24) in Feenstra (2010).46

Note that k1 is a constant that depends only parameters σ, γ,, θ, and k0:

k1 =
1

k0

[(
1 + γ

γ

)(
σ

σ − 1

)
θ(σ − 1) γ

γ+σ

θ − (σ − 1) γ
γ+σ

]1− 1
θ

(
γ

1+γ

)
(σ−1

σ )

=
1

k0

 θσ
(

1+γ
γ+σ

)
θ − (σ − 1) γ

γ+σ

1− 1
θ

(
γ

1+γ

)
(σ−1

σ )

.

46The exponent for fij , 1− θ
η

, differs from, and is a corrected version of, that in Feenstra (2010). Under

CMC, the exponent in Feenstra (2010) should be 1− θ
ω

, not 1 + θ
ω

(
= 1 + (ω+1)(σ−1)

ωσ

)
, and was confirmed

with Robert Feenstra in email correspondence.
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B Appendix B

B.1 The Bergstrand (1985) Model with Increasing Marginal Costs

As noted in numerous studies and in prominent surveys of the gravity equation in international

trade, the first formal theoretical foundation for the gravity equation was Anderson (1979).

Assuming a frictionless world, Anderson (1979) established theoretically one of the most

enduring empirical relationships in international trade – that bilateral trade from i to j

(Xij) was proportional to the product of both countries’ national outputs (YiYj) – using

only four assumptions: every country i is endowed with a nationally differentiated output

(Yi), preferences are identical and homothetic across countries, the assumed absence of trade

costs allows all prices to be identical across countries, and trade is balanced multilaterally

(i.e., markets clear). The first three assumptions implied the demand for i’s output in j

was proportionate to j’s output, Xij = biYj , where bi is every importer’s demand for the

good of i as a share of its expenditures. Assuming all output of each country is absorbed

(i.e., markets clear), Xij = YiYj/YW , where YW is world output. However, once Anderson

(1979) introduced (positive) trade costs, he was unable to generate a transparent “structural”

gravity equation, such as in Anderson and van Wincoop (2003). In fact, throughout the

later sections including his appendix (using CES preferences), Anderson (1979) assumed

inappropriately “the convention that all free trade prices are unity” despite his incorporating

trade costs (cf., p. 115).

In contrast to Anderson (1979), the main motivation behind Bergstrand (1985) was to

address the role of prices in the gravity equation, both theoretically and empirically. Unlike

Anderson (1979), Bergstrand (1985) started with a CES utility function to emphasize that

products from various markets were imperfect substitutes, as originally hypothesized by

Armington. Moreover, he nested a CES utility function among importables inside a CES

utility function between importables and the domestic good. On the supply side, he chose

not to use the convention of constant marginal costs. Rather, he introduced a constant-

elasticity-of-transformation (CET) function for producing output in the domestic market

and foreign market, allowing a cost (in terms of labor) for output to be transformed between

home and foreign markets. He also used a CET function to allow a cost for foreign output to

be transformed between various export markets. He nested the latter CET function inside

the former CET function. This formulation motivated upward-sloping supply curves for each

bilateral market (including the domestic market). Assuming bilateral import demand values

equaled bilateral export supply values in general equilibrium, this generated a system of

4N2 + 3N equations in the same number of unknowns.

Assuming each bilateral market was small relative to the other N2 − 1 markets and

identical preferences and technologies across countries, Bergstrand (1985) derived the trade
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gravity equation:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (CijTij)
−σ γ+1

γ+σE
σ γ+1
γ+σ

ij

 N∑
k=1,k 6=i

p1+γ
ik

−
(σ−1)(γ−η)
(1+γ)(γ+σ)

 N∑
k=1,k 6=j

p1−σ
kj


(γ+1)(σ−µ)
(1−σ)(γ+σ)


 N∑
k=1,k 6=i

p1+γ
ik


1+η
1+γ

+ p1+η
ii


− σ−1
γ+σ


 N∑
k=1,k 6=j

p1−σ
kj


1−µ
1−σ

+ p1−µ
jj


− γ+1
γ+σ

,

(B.1)

where Cij ≥ 1 is the gross transport (or c.i.f./f.o.b.) factor, Tij ≥ 1 is the gross tariff rate,

Eij is the spot exchange rate (value of j’s currency in terms of i’s), pik is the (free-on-board,

or f.o.b.) price in i’s currency of i’s goods sold in k, p̄kj is the (cost-insurance-freight, or

c.i.f.) price of k’s good in j (including tariffs), σ (µ) is the elasticity of substitution in

consumption between importables (between importables and the domestic good), and γ

(η) is the elasticity of transformation of output between export markets (between foreign

markets and the domestic market).47 The limitation in Bergstrand (1985) was that – due to

the complexity of equation (B.1) – the market-clearing condition of Anderson (1979) could

not be imposed.

In the remainder of this appendix, we provide two theoretical results. First, we show that

a special case of gravity equation (14) in Bergstrand (1985) – labeled equation (B.1) above –

yields that the intensive-margin (and trade) elasticity with respect to τij is identical to the

intensive-margin elasticity in Section 3.1 of this paper (from our modified Melitz model).

Second, we show that – allowing the non-nested (single) constant-elasticity-of-transformation

in this case to equal infinity and assuming multilateral trade balance – a “structural gravity

equation” results.

B.2 Reconciling the Intensive-Margin Elasticity in Bergstrand (1985) with

Section 3.1’s Intensive-Margin Elasticity

Before we reconcile equation (B.1) with structural gravity, a special case of Bergstrand

(1985) yields an intensive-margin (and, in this homogeneous-firm context, trade) elasticity

identical to that in Section 3.2. We need only two assumptions. First, assume the elasticities

of substitution in consumption in equation (B.1) to be identical (σ = µ). Second, assume the

elasticities of transformation in equation (B.1) to be identical (γ = η). Simplifying notation

47We have replaced here some notation in the original article. We use Xij for the nominal trade flow
rather than PXij and we use pij rather than Pij to denote bilateral prices.
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in equation (B.1) by denoting τij = CijTij/Eij , these two assumptions yield:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (τij)
(1−σ) γ+1

γ+σ


 N∑
j=1

p1+γ
ij

 1
1+γ


(1−σ) γ+1

γ+σ ( N∑
i=1

(pijτij)
1−σ

) 1
1−σ
−(1−σ) γ+1

γ+σ

.

(B.2)

From equation (B.2), the (positively-defined) intensive-margin (and trade) elasticity with

respect to τij is:

ετ = −∂Xij

∂τij

τij
Xij

= − 1 + γ

σ + γ
(1− σ) =

1 + γ

σ + γ
(σ − 1). (B.3)

This elasticity is identical to that in Section 3.1 of the current paper. Moreover, this trade

elasticity is scaled down by 1+γ
σ+γ relative to the constant marginal cost case in Anderson

(1979) (and analogously in Krugman (1980)). The intuitive explanation for this was provided

in the paper’s introduction, Section 1, and illustrated in Figure 1.

B.3 Reconciling the Gravity Equation in Bergstrand (1985) with Struc-

tural Gravity

The second theoretical result in this appendix is to show that a special case of gravity equation

(14) in Bergstrand (1985) is consistent with the structural gravity equation in Anderson and

van Wincoop (2003) and in Baier et al. (2017). Building upon the previous section B.2, add

two more assumptions. First, assume production is now costlessly transformable between

markets (γ =∞). With this additional assumption, equation (B.2) above simplifies to:

Xij = Yj

(
piτij
Pj

)1−σ
(B.4)

where pij is replaced by pi since output is now costlessly transformed between markets and:

Pj ≡

[
N∑
i=1

(piτij)
1−σ

]1/(1−σ)

. (B.5)

Equation (B.4) is identical to equation (6) in Anderson and van Wincoop (2003) (ignoring

the arbitrary preference parameter βi in that paper) and to the bilateral import demand

functions in structural gravity equations discussed in Baier et al. (2017). Second, structural

gravity follows once one assumes also market clearance (trade balance), Yi =
∑N

j=1Xij .
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Following derivations in Anderson and van Wincoop (2003) and Baier et al. (2017):

Xij =
YiYj
YW

(
τij

ΠiPj

)1−σ
(B.6)

where:

Πi =

 N∑
j=1

Yj
YW

(
τij
Pj

)1−σ
1/(1−σ)

(B.7)

and:

Pj =

[
N∑
i=1

Yj
YW

(
τij
Πi

)1−σ
]1/(1−σ)

. (B.8)

Thus, the simplifications of equation (B.1) above from Bergstrand (1985) – along with adding

in the market-clearing condition – yield the same structural gravity equation as in Anderson

and van Wincoop (2003) and Baier et al. (2017).
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C Appendix C

The key distinguishing assumption of our model is that marginal costs are increasing in

output. There are many ways to implement this. In section 2.2 of the paper, we motivated

the case for marginal costs increasing with respect to destination-specific output. This is one

extreme of a range of models. At the other extreme, marginal costs could depend exclusively

on the overall output of the firm. In that case, all the destination-specific customization is

captured in the fixed export costs, as more common to Melitz models. In this appendix, we

develop a model that fits this type of increasing marginal costs, that is, marginal costs are

allowed to increase with total firm output.

If the marginal costs depend on overall firm output, which itself depends on the en-

dogenous set of countries to which the firm exports, we cannot solve analytically a model

with asymmetric country size and asymmetric bilateral trade barriers. As a consequence,

in this appendix we assume all countries are identical and develop an extension of the

symmetric-country Melitz (2003) model with increasing marginal costs in total firm-level

output and a Pareto distribution of firm productivity. We present only key results because

the solution method is similar to the one we used to solve the model in the main text; we

refer the reader to Appendix A for additional details.

Consider a world with 1 + J identical countries. The representative consumer in each

country has CES preferences defined over differentiated varieties. The representative consumer

maximizes utility subject to the standard income constraint. Hence, the optimal aggregate

demand function for each variety ν is given by:

c(ν) = EP σ−1pc(ν)−σ, with P =

[∫
ν∈Ω

pc(ν)1−σdν

] 1
1−σ

(C.1)

where E denotes aggregate expenditure, pc(ν) is the unit price of variety ν, and Ω is the set

of varieties available for consumption.48

Firms face fixed production costs and increasing marginal costs, such that the total labor

demand by a firm depends on its total output (q) and whether or not the firm exports as

follows:

l(ϕ) = f + IxJfx +
q

1+ 1
γ

ϕ
, (C.2)

where ϕ denotes the firm’s productivity and q is total output defined as:

q = qd + IxJqx,

48Different from the main text and Appendix A, we omit, for brevity, preference parameter b.
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where qd denotes domestic sales and qx denotes sales to a foreign market.49 The variable Ix

is an indicator function equal to 1 if the firm exports and 0 otherwise. It is important to note

that, because countries and (international bilateral) trade costs (τ and fx) are symmetric, if

a firm can export profitably to one market abroad, it will be able to export profitably to all

foreign markets.

Using the labor-demand function in equation (C.2), we can express firm-level profits as:

π(ϕ) = pdqd + IxJpxqx − w
[
f + IxJfx +

1

ϕ
(qd + IxJqx)

1+ 1
γ

]
, (C.3)

where w is the wage rate. It is important to emphasize that, in contrast to the benchmark

model, it is not possible to separate total profits into domestic and export components. This

key distinction is a direct consequence of the technology. As shown in equation (C.2), labor

demand is a non-linear function of total firm output such that it is not possible to separate

the costs associated with output for domestic sales from the costs associated with output

for foreign sales. As a result, the firm’s production costs must be expressed as a function

of total output as seen from the last term in square brackets. This implies that we cannot

solve for the optimal behavior of a given firm in each market separately, that is, without

also taking into account its behavior in other markets. Instead, we need to characterize the

optimal behavior of firm as a function of both its market (domestic vs. foreign) and its type

(domestic vs. exporter).

Markets are segmented, such that firms can charge different prices in the domestic and

foreign markets. Therefore, the firm-level profit maximization problem takes the following

form:

max
pd,px

π(ϕ) = pdqd + IxJpxqx − w
[
f + IxJfx +

1

ϕ
(qd + IxJqx)

1+ 1
γ

]
(C.4)

subject to the demand constraints defined in equation (C.1). The two first-order conditions

imply the following pricing rules:

pDd (ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

ϕ
qDd (ϕ)

1
γ ,

pXd (ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

ϕ

[(
1 + Jτ1−σ) qXd (ϕ)

] 1
γ ,

(C.5)

where pDd (ϕ) and qDd (ϕ) denote, respectively, the optimal domestic sales price and output of a

(pure) domestic firm (denoted with superscript D) with productivity ϕ producing and selling

in the domestic market (denoted with subscript d). Let pXd (ϕ) and qXd (ϕ) denote, respectively,

the optimal sales price and output of an exporting firm (denoted with superscript X) with

49Different from the main text and Appendix A, we omit, for brevity, the TFP factor A.

36



productivity ϕ selling in the domestic market (denoted with subscript d). The results in

equation (C.5) imply that, conditional on productivity and total output, exporting firms

(located in country d) can charge higher, equal, or lower prices at home relative to (pure)

domestic firms, due to opposing effects from productivity differences versus scale effects. The

higher productivity of an exporter tends to lower pXd relative to pDd . However, an exporter

serves more markets, tending to raise pXd relative to pDd .

We define the profitability threshold ϕ∗ as the productivity level at which a (pure)

domestic firm makes zero profits: π(ϕ∗|Ix = 0) = 0, where the profit function π(·) is defined

in equation (C.3). Using this condition, we can solve for the output and the price of the

threshold pure domestic firm as follows:

qDd (ϕ∗) =

[(
γ

σ + γ

)
(σ − 1)fϕ∗

] γ
1+γ

,

pDd (ϕ∗) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)f

] 1
1+γ

w(ϕ∗)
−γ
1+γ .

(C.6)

Similarly, if we define the export profitability threshold as the level of productivity ϕ∗x

required for an exporting firm to break even, π(ϕ∗x|Ix = 1) = 0, we can solve for the domestic

price and output of the threshold exporting firm as follows:

qXd (ϕ∗x) =

(
1

1 + Jτ1−σ

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)ϕ∗x

] γ
1+γ

,

pXd (ϕ∗x) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)

] 1
1+γ

w(ϕ∗x)
−γ
1+γ .

(C.7)

Note that, when J = 0, these last two solutions become equivalent to the domestic firms’

solutions in (C.6), as they should. Substituting the results in (C.6) and (C.7) into the

zero-profit conditions that define the productivity thresholds and rearranging, we obtain:

π(ϕ∗|Ix = 0) = 0 ⇔ rDd (ϕ∗) =

(
1 + γ

σ + γ

)
σwf,

π(ϕ∗x|Ix = 1) = 0 ⇔ rXd (ϕ∗x) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx) .

(C.8)

From the definition of revenues (r(ϕ) = p(ϕ)q(ϕ)) and the optimal demand function in

(C.1), it follows that

rDd (ϕ)

rDd (ϕ∗)
=

[
pDd (ϕ)

pDd (ϕ∗)

]1−σ

and
rXd (ϕ)

rXd (ϕ∗x)
=

[
pXd (ϕ)

pXd (ϕ∗x)

]1−σ

. (C.9)

We can simplify these results using the definitions of prices in equations (C.6) and (C.7) to
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obtain analytical expressions for the revenue of any firm as a function of the revenue of the

threshold firm. Combining these expressions with equations (C.8), it is possible to express

the revenue of any domestic and exporting firms, respectively, as follows:

rDd (ϕ) =

(
1 + γ

σ + γ

)
σwf

(
ϕ

ϕ∗

)(σ−1)
(

γ
σ+γ

)
,

rXd (ϕ) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx)

(
ϕ

ϕ∗x

)(σ−1)
(

γ
σ+γ

)
.

(C.10)

Using equations (C.8), we can obtain a first expression for the ratio of domestic threshold

revenue and export threshold revenue,

rDd (ϕ∗)

rXd (ϕ∗x)
=
(
1 + Jτ1−σ)( f

f + Jfx

)
. (C.11)

We can obtain a second expression for the ratio of domestic threshold revenue and export

threshold revenue using the definition of revenue and the optimal demand function as follows:

rDd (ϕ∗)

rXd (ϕ∗x)
=

[
pDd (ϕ∗)

pXd (ϕ∗x)

]1−σ

. (C.12)

Using the definitions of prices in equations (C.6) and (C.7), we obtain:

rDd (ϕ∗)

rXd (ϕ∗x)
=

(
f

f + Jfx

) 1−σ
1−γ

(
ϕ∗

ϕ∗x

)(σ−1)
(

γ
1+γ

)
. (C.13)

Combining our two expressions for the ratio of revenues, (C.11) and (C.13), we can solve

for the ratio of the productivity thresholds as follows:

ϕ∗x
ϕ∗

=

(
1

1 + Jτ1−σ

)( 1
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( 1
σ−1)

(
σ+γ
γ

)
. (C.14)

When γ → ∞, the relationship between the two thresholds is analogous to that in the

benchmark Melitz (2003) model. We can use the definitions of revenue in (C.10) and the

ratio in (C.14) to express average profits as a function of parameters of the model and the

profitability threshold ϕ∗. Using the free entry condition that the expected value of entry is

equal to the cost of entry, we can show that there exists a unique equilibrium threshold ϕ∗.

We are interested in defining the trade elasticities in our model. For convenience, we

introduce the term XD to denote aggregate domestic absorption. As a first step, we can
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define aggregate domestic absorption as follows:

XD = M

∫ ∞
ϕ∗

rd(ϕ)µ(ϕ)dϕ = M

[∫ ϕ∗x

ϕ∗
rDd (ϕ)µ(ϕ)dϕ+

∫ ∞
ϕ∗x

rXd (ϕ)µ(ϕ)dϕ

]
, (C.15)

where M is the equilibrium mass of firms in each country and µ(ϕ), defined as:

µ(ϕ) =

0 if ϕ < ϕ∗,

g(ϕ)
1−G(ϕ∗) if ϕ ≥ ϕ∗,

(C.16)

denotes the equilibrium distribution of firm productivities. We assume that the following

theoretical restriction on the parameters holds: θ > γ
σ+γ (σ − 1). Equation (C.15) shows

that domestic absorption depends on the mass of firms M and the average sales of firms

in their domestic market. The average sales per firm can be decomposed into the separate

contributions of domestic firms and exporting firms, the first and second terms in square

brackets, respectively.

To obtain an analytical solution, we assume that firms draw their productivity from a

Pareto distribution with parameter θ, such that G(ϕ) = 1−ϕ−θ. Using this assumption and

the definitions of revenue in equation (C.10), we can solve for aggregate domestic absorption

as:

XD = M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθwf (C.17)

×

1−
(
ϕ∗x
ϕ∗

) γ(σ−1)
σ+γ

−θ
+

(
1

1 + Jτ1−σ

)(
f + Jfx

f

)(
ϕ∗x
ϕ∗

)−θ .
In a second step, we introduce, for convenience, the term XX to denote aggregate

expenditures on foreign goods, noting that – due to symmetry – aggregate imports (from

the rest of the world) equal aggregate exports (to the rest of the world). We define aggregate

expenditure on foreign goods as:

XX = MxJ

∫ ∞
ϕ∗x

rXx (ϕ)µx(ϕ)dϕ = MJ

∫ ∞
ϕ∗x

rXx (ϕ)µ(ϕ)dϕ, (C.18)

where Mx = [1−G(ϕ∗x)]M is the equilibrium mass of exporting firms in each country and

µx(ϕ), defined as:

µx(ϕ) =

0 if ϕ < ϕ∗x,

g(ϕ)
1−G(ϕ∗x) if ϕ ≥ ϕ∗x,

(C.19)
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denotes the equilibrium distribution of exporting firms’ productivities, where µx(ϕ) =
1−G(ϕ∗)
1−G(ϕ∗x)µ(ϕ). Substituting with the definition of revenue in equation (C.10) and using the

fact that rXx (ϕ) = τ1−σrXd (ϕ) yields:

XX = M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθw(f + Jfx)

(
Jτ1−σ

1 + Jτ1−σ

)(
ϕ∗x
ϕ∗

)−θ
. (C.20)

We now have separate analytical expressions for expenditures on domestic and foreign goods.

Using E to denote aggregate expenditures (E = XD +XX), we can now compute the

share of aggregate expenditures on foreign goods (XX/E). Using equations (C.14), (C.17)

and (C.20), we obtain:

XX

E
=

XX

XD +XX
=

Jτ1−σ

1+Jτ1−σ

1 +
(

1
1+Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

) (
f+Jfx
f

)( θ
σ−1)

(
σ+γ
γ

)
−1
−
(

1
1+Jτ1−σ

) 1+γ
σ+γ

.

(C.21)

We can use this last result to derive the trade elasticities. Note that:

ετ ≡ −
∂(XX/JE)

∂τ

τ

XX/JE
= −∂(XX/E)

∂τ

τ

XX/E
, (C.22)

εf ≡ −
∂(XX/JE)

∂fx

fx
XX/JE

= −∂(XX/E)

∂fx

fx
XX/E

. (C.23)

It is useful to introduce additional notation to simplify the presentation. Define the following

terms:

a =

(
1

1 + Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( θ
σ−1)

(
σ+γ
γ

)
−1

, (C.24)

b =

(
1

1 + Jτ1−σ

) 1+γ
σ+γ

, (C.25)

c =
Jτ1−σ

1 + Jτ1−σ . (C.26)

Then, it is possible to rewrite the share of expenditures on foreign goods (C.21) as follows:

XX

E
=

c

1 + a− b
. (C.27)
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After some tedious, but straightforward, algebra, we can show that:

ετ = θ

(
1 + γ

γ

)[
a

1 + a− b
−
(
σ − 1

θ

)(
γ

σ + γ

)
b

1 + a− b

]
c, (C.28)

εf =

[(
σ + γ

γ

)(
θ

σ − 1

)
− 1

](
a

1 + a− b

)
c. (C.29)

To gain some insight into these complex equations, we consider the case of a large number

of countries. In the limit, when J tends to infinity it can be shown that:50

lim
J→∞

a =∞ (if θ > γ), lim
J→∞

b = 0, and lim
J→∞

c = 1. (C.30)

Together, it can be shown that these results imply:

lim
J→∞

a

1 + a− b
= 1, and lim

J→∞

b

1 + a− b
= 0. (C.31)

Using these results in the definition of the elasticities in (C.28) and (C.29), it follows that:

ετ = θ

(
1 + γ

γ

)
, (C.32)

εf =
θ
(

1+γ
γ

)
1+γ
σ+γ (σ − 1)

− 1. (C.33)

These results show that – as the number of countries increases – the trade elasticities in our

symmetric model with increasing marginal costs defined over total firm output converge to

the elasticities in our benchmark model with asymmetric countries and destination-specific

increasing marginal costs.

50We provide evidence in Section 5 of the paper, comparing Tables 3 and 4, that estimates of θ exceed
estimates of γ within the 10th-75th percentiles of the 568 four-digit industries.
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D Appendix D

In this appendix, we provide details on the derivations to establish the (structural) bilateral

import-demand equation (29), the (structural) bilateral import-unit value equation (36),

and then the (extended F/BW) reduced-form estimation equation (44) (which builds upon

reduced-form equation (42)).

D.1 Bilateral Import Demand

Because the price index
∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ in equation (24) is not observable, we cannot

use equation (24) to estimate the parameters of the model. To make progress, we express

the observable average cost-insurance-freight (or cif) import unit value pcijt as the ratio of

two unobservable price indexes (p̃cij , p̀
c
ij), as noted in equation (25):

pcij ≡
XD
ij

QDij
=

∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ∫∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ
≡
p̃cij
p̀cij
. (D.1)

In what follows, we use the theoretical model to obtain analytical expressions for each

of the unobserved price indexes, p̃cij and p̀cij . We then show that, by combining these two

expressions in conjunction with the Pareto distribution (and allowing for deviations from

Pareto, e.g., eP1
ij , etc.), we can express nominal bilateral import demand as a function of the

observable bilateral import unit value (pcij), e
X
ij , eP1

ij , etc.

We proceed in several steps. The first step is to solve for firm-level (bilateral) prices

pcij(ϕ) as functions of the productivity threshold ϕ∗ij . Recalling qij(ϕ)/τij = cij(ϕ) and

pcij(ϕ) = τijpij(ϕ), we can use optimal demand equation (2) and optimal pricing rule (6) to

show:

qij(ϕ)

qij(ϕ∗ij)
=

(
ϕ

ϕ∗ij

)σ( γ
σ+γ

)
. (D.2)

Substituting into equation (D.2) using equation (8) for qij(ϕ
∗
ij) yields:

qij(ϕ) =

[(
γ

σ + γ

)
(σ − 1)fij

] γ
1+γ

(ϕ∗ij)
−
(

γ
1+γ

)(
γ

σ+γ

)
(σ−1)

ϕ
σ
(

γ
σ+γ

)
. (D.3)

Substituting equation (D.3) for qij(ϕ) into optimal pricing rule (6) yields:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

(ϕ∗ij)
−
(

1
1+γ

)(
γ

σ+γ

)
(σ−1)

w̃iϕ
− γ
σ+γ

(D.4)

where recall that w̃i = wi/Ai.
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In the second step, we compute the two unobservable average prices p̃cij and p̀cij and

show that the observable import unit value pcij is proportional to the optimal price of the

break-even exporter, pcij(ϕ
∗
ij). Using equation (D.4), optimal pricing function (6), the Pareto

distribution assumption allowing deviations from Pareto, and recalling pcij(ϕ) = τijpij(ϕ),

we can solve for:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γ(σ − 1)

]
pcij(ϕ

∗
ij)

1−σeP1
ij (D.5)

where ePij 6= 1 implies deviations from the Pareto distribution for p̃cij . Using equation (D.1),

optimal pricing function (6), and the Pareto distribution assumption allowing deviations

eP2
ij , we can solve for:

p̀cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

]
pcij(ϕ

∗
ij)
−σeP2

ij . (D.6)

Using these results and equation (D.1), we obtain:

pcij =

[
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]
pcij(ϕ

∗
ij)

(
eP1
ij

eP2
ij

)
(D.7)

which shows that observable pcij is proportional to the optimal price of the zero-cutoff-profit

exporter and Pareto deviations.

The third step is straightforward. We can rewrite equation (D.7) with pcij(ϕ
∗
ij) as a

function of the observable price import unit value pcij :

pcij(ϕ
∗
ij) =

[
θ(σ + γ)− γσ + γ

θ(σ + γ)− γσ

]
pcij

(
eP2
ij

eP1
ij

)
(D.8)

and substitute this last result into equation (26) to obtain:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

(pcij)
1−σ

(
eP2
ij

eP1
ij

)1−σ

eP1
ij . (D.9)

We can now use this last result to express the aggregate nominal bilateral import demand,

defined in equation (24), as a share of total expenditure as follows:

XD
ij

Ej
= k2MijP

σ−1
j (pcij)

1−σ

(
eP2
ij

eP1
ij

)1−σ

eP1
ij (D.10)

where k2 is a constant that depends only on the structural parameters σ, γ, and θ:

k2 =

[
θ(σ + γ)

θ(σ + γ)− γ (σ − 1)

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

.
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In the fourth step, we remove the productivity threshold, ϕ∗ij , using equation (8) and

the mass of firms, Mij , using an extended version of equation (11) allowing deviations from

Pareto to yield:

XD
ij

Ej
= k3A

1+θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i E

θ
(

1+γ
γ

)
( 1
σ−1)

j

P
(σ−1)+θ

(
1+γ
γ

)
j τ

−θ
(

1+γ
γ

)
ij f

−θ( 1+γ
γ )

1+γ
σ+γ (σ−1)

ij (pcij)
1−σeDij (D.11)

where k3 is a constant that depends only on the structural parameters σ, γ, θ, δ, and fe:

k3 =
k2

δfe

[(
1 + γ

γ

)(
σ

σ − 1

)]θ( 1+γ
γ

)
( σ
σ−1) [ γ

σ + γ
((σ − 1))

] −θ( 1+γ
γ )

1+γ
σ+γ (σ−1)

and eDij ≡ eP1
ij

(
eP2
ij

eP1
ij

)1−σ
eP3
ij . While the first two RHS terms of eDij were motivated above,

the Pareto deviation eP3
ij is associated with the mass of firms in the presence of deviations

from Pareto. Referring back to section A.5 of Online Appendix A, the mass of firms Mij

turns out to be an extension of equation (A.41) with eP3
ij appended to the RHS. Importantly,

eP3
ij has two components, one of which is eP4

ij which surfaces because 1−G(ϕ∗ij) = (ϕ∗ij)
−θeP4

ij

in the presence of deviations from Pareto. eP4
ij is important for eP3

ij , and hence eDij , because

of its particular influence on small exporters that tend to be near the cutoff productivity,

consistent with the evidence that deviations from Pareto tend to surface for small exporters.

The superscript D in eDij refers to the role of deviations from Pareto on the “demand” side

(sij ≡
XD
ij

Ej
).

This completes the derivation for the demand-side equation of the empirical model.

D.2 Bilateral Export Supply

The derivations for the bilateral import-unit value pcij equation (36) are largely in the text

and use part of section D.1 above. In those derivations, we use a constant k4, defined as:

k4 ≡
[(

γ

1 + γ

)(
σ − 1

σ

)]γ [ θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(γ + σ)− γσ + γ

θ(γ + σ)− γσ

]γ
(D.12)

and a constant k5 defined as:

k5 =

(
k4

δfe

)− 1
1+γ
[(

1 + γ

γ

)(
σ

σ − 1

)]( θ−γ
γ

)
( σ
σ−1) [ γ

σ + γ
(σ − 1)

] θ−γ
γ

1+γ
σ+γ (σ−1)

. (D.13)
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D.3 Reduced-Form Specification

In this subsection, we provide derivations associated with a complete specification of the-

oretical coefficients based upon the model that are associated with estimating equations

(42) or (44); in the interest of brevity, we provide this reduced-form equation where the

underlying variables include only Group 1 and Group 2 variables associated with Specification

2, “IMC-Partial.” Adapting equations (37) and (38) for this specification, εijt simplifies to:

εijt = ∆k ln sijt + (σ − 1)∆k ln pcijt + θ

(
1 + γ

γ

)
∆k ln tarijt + θ

(
1 + γ

γ

)
∆k ln transijt,

(D.14)

and adapting equations (40) and (41) for this specification, ψijt simplifies to:

ψijt = − 1

1 + γ
∆k ln sijt + ∆k ln pcijt −

θ − γ
γ

∆k ln tarijt −
θ − γ
γ

∆k ln transijt. (D.15)

Taking the product of εijt and ψijt yields an equation with εijtψijt on the LHS and 16

products on the RHS. Consolidating common RHS products yields:

εijtψijt = (σ − 1)
(

∆k ln pcijt

)2
− 1

1 + γ

(
∆k ln sijt

)2
+

(
1− σ − 1

1 + γ

)[(
∆k ln sijt

)(
∆k ln pcijt

)]
+

[
θ

(
1 + γ

γ

)
− θ − γ

γ
(σ − 1)

] [(
∆k ln pcijt

)(
∆k ln tarijt

)]
−
(
θ

γ
+
θ − γ
γ

)[(
∆k ln sijt

)(
∆k ln tarijt

)]
− θ

(
1 + γ

γ

)(
θ − γ
γ

)(
∆k ln tarijt

)2

+

[
θ

(
1 + γ

γ

)
− θ − γ

γ
(σ − 1)

] [(
∆k ln pcijt

)(
∆k ln transijt

)]
−
(
θ

γ
+
θ − γ
γ

)[(
∆k ln sijt

)(
∆k ln transijt

)]
− θ

(
1 + γ

γ

)(
θ − γ
γ

)(
∆k ln transijt

)2

− θ
(

1 + γ

γ

)(
θ − γ
γ

)[(
∆k ln tarijt

)(
∆k ln transijt

)]
. (D.16)

Rearranging terms to isolate (σ− 1)(∆k ln pcijt)
2 on the LHS and dividing through by (σ− 1)
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yields the estimating equation (where ξijt = εijtψijt):(
∆k ln pcijt

)2
=

1

(1 + γ)(σ − 1)

(
∆k ln sijt

)2
+

(
σ − γ − 2

(1 + γ)(σ − 1)

)[(
∆k ln sijt

)(
∆k ln pcijt

)]
−
[

θ

σ − 1

(
1 + γ

γ

)
− θ − γ

γ

] [(
∆k ln pcijt

)(
∆k ln tarijt

)]
+

(
θ

γ(σ − 1)
+

θ − γ
γ(σ − 1)

)[(
∆k ln sijt

)(
∆k ln tarijt

)]
+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ
γ

)(
∆k ln tarijt

)2

−
[

θ

σ − 1

(
1 + γ

γ

)
− θ − γ

γ

] [(
∆k ln pcijt

)(
∆k ln transijt

)]
+

(
θ

γ(σ − 1)
+

θ − γ
γ(σ − 1)

)[(
∆k ln sijt

)(
∆k ln transijt

)]
+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ
γ

)(
∆k ln transijt

)2

+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ
γ

)[(
∆k ln tarijt

)(
∆k ln transijt

)]
+ ξijt.

(D.17)

D.4 Moment and Identification Conditions’ Derivations

Estimation of equation (44) produces consistent coefficient estimates under two conditions.

The first is the moment condition, E(ξijt) ≡ E(εijtψijt) = 0; alternatively, the expectation

can equal a constant as long as equation (44) includes an intercept (β0). Recalling εijt ≡
σ∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt + ∆k ln eP3

ijt and ψijt ≡ − 1
1+γ∆k ln eP3

ijt − 1
1+γ∆k ln eP5

ijt :

E(εijtψijt) = − σ

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP3

ijt )]
]

− 1− σ
1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP3

ijt )]
]

− 1

1 + γ

[
var(∆k ln eP3

ijt ) + [E(∆k ln eP3
ijt )]

2
]

− σ

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP5

ijt )]
]

− 1− σ
1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP5

ijt )]
]

− 1

1 + γ

[
cov[∆k ln eP3

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP3
ijt )][E(∆k ln eP5

ijt )]
]

= −
(

1

1 + γ

)
var(∆k ln eP3

ijt ) ≡ −4

(
1

1 + γ

)
var(ln eP3

ijt ) ≡ −4

(
1

1 + γ

)
σ2

ln eP3
ij

(D.18)
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where σ still represents the elasticity of substitution in consumption but σ2
z represents the

variance over time of the variable z. Note that we assume the expected values of the time-

differenced (as well as reference-exporter-country differenced) deviations from the Pareto

distributions of the underlying variables are zero (e.g., E(∆k ln eP1
ijt ) = 0) and the double-

differenced deviations have constant variances. Accordingly, we assume the covariances are

zero as well (e.g., cov[∆k ln eP1
ijt ,∆

k ln eP3
ijt ] = 0). The moment condition is satisfied as the

RHS in the equation above, −
(

1
1+γ

)
var(∆k ln eP3

ijt ), is a constant.

The second condition necessary for consistent estimates of the coefficients is the iden-

tification condition. Following Feenstra (1994), this condition is equation (48) in the

text. In the context of our model in section 4.1.5 (ignoring ∆ ln fRijt), the necessary con-

dition for identification is equation (49). Equation (49) is obtained by recalling again

εijt ≡ σ∆k ln eP1
ijt + (1− σ)∆k ln eP2

ijt + ∆k ln eP3
ijt and ψijt ≡ − 1

1+γ∆k ln eP3
ijt − 1

1+γ∆k ln eP5
ijt .

Using εijt:

var(εijt) = var
[
σ∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt + ∆k ln eP3

ijt

]
= σ2 var(∆k ln eP1

ijt ) + (1− σ)2 var(∆k ln eP2
ijt ) + var(∆k ln eP3

ijt )

+ 2 cov
[
σ∆k ln eP1

ijt , (1− σ)∆k ln eP2
ijt

]
+ 2 cov

[
σ∆k ln eP1

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt ,∆
k ln eP3

ijt

]
= σ2σ2

∆k ln eP1
ij

+ (1− σ)2σ2
∆k ln eP2

ij
+ σ2

∆ ln eP3
ij
. (D.19)

The latter can be inserted into the LHS of equation (48) to produce the LHS of equation

(49). Using ψijt:

var(ψijt) = var

[
− 1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt

]
=

(
1

1 + γ

)2

var(∆k ln eP3
ijt ) +

(
1

1 + γ

)2

var(∆k ln eP5
ijt )

+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt ,−
1

1 + γ
∆k ln eP5

ijt

]
=

(
1

1 + γ

)2 [
σ2

∆k ln eP3
ij

+ σ2
∆k ln eP5

ij

]
. (D.20)

The latter can be inserted into the RHS of equation (48) to produce the RHS of equation

(49).
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D.5 Moment and Identification Conditions’ Derivations Including ∆ ln fRijt

In section 4.1.5, we addressed fixed trade-costs measurement. In that section, we noted that

the majority of fixed trade costs are exporter specific or importer specific. However, for

estimation, a residual measurement error exists, which we labeled fRijt. With the introduction

of this additional error term, we can readily modify the moment and identification conditions

to accommodate this additional error term. As we will see, this has inconsequential effects

on the moment and identification issues addressed earlier.

In this case, we need to redefine εijt as:

εijt ≡ σ∆k ln eP1
ijt + (1− σ)∆k ln eP2

ijt + ∆k ln eP3
ijt + aD∆ ln fRijt (D.21)

where aD is a constant, and redefine ψijt as:

ψijt ≡ −
1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt + aS∆ ln fRijt (D.22)
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where aS is another constant. Hence, the moment condition becomes:

E(εijtψijt) = − σ

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP3

ijt )]
]

− 1− σ
1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP3

ijt )]
]

− 1

1 + γ

[
var(∆k ln eP3

ijt ) + [E(∆k ln eP3
ijt )]

2
]

− aD

1 + γ

[
cov[∆k ln fRijt,∆

k ln eP3
ijt ] + [E(∆k ln fRijt)][E(∆k ln eP3

ijt )]
]

− σ

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP5

ijt )]
]

− 1− σ
1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP5

ijt )]
]

− 1

1 + γ

[
cov[∆k ln eP3

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP3
ijt )][E(∆k ln eP5

ijt )]
]

− aD

1 + γ

[
cov[∆k ln fRijt,∆

k ln eP5
ijt ] + [E(∆k ln fRijt)][E(∆k ln eP5

ijt )]
]

+ aDaS
[
var(∆k ln fRijt) + [E(∆k ln fRijt)]

2
]

+ σaS
[
cov[∆k ln eP1

ijt ,∆
k ln fRijt] + [E(∆k ln eP1

ijt )][E(∆k ln fRijt)]
]

+ (1− σ)aS
[
cov[∆k ln eP2

ijt ,∆
k ln fRijt] + [E(∆k ln eP2

ijt )][E(∆k ln fRijt)]
]

+ aS
[
cov[∆k ln eP3

ijt ,∆
k ln fRijt] + [E(∆k ln eP3

ijt )][E(∆k ln fRijt)]
]

= −
(

1

1 + γ

)
var(∆k ln eP3

ijt ) + aDaS var(∆k ln fRijt) (D.23)

which still satisfies the moment condition.

The second condition necessary for consistent estimates of the coefficients is the identifi-

cation condition. The extension has inconsequential effects on the identification condition.
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Using the redefined εijt from above:

var(εijt) = var
[
σ∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt + ∆k ln eP3

ijt + aD∆k ln fRijt

]
= σ2 var(∆k ln eP1

ijt ) + (1− σ)2 var(∆k ln eP2
ijt ) + var(∆k ln eP3

ijt ) + (aD)2 var(∆k ln fRijt)

+ 2 cov
[
σ∆k ln eP1

ijt , (1− σ)∆k ln eP2
ijt

]
+ 2 cov

[
σ∆k ln eP1

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
σ∆k ln eP1

ijt , a
D∆k ln fRijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt , a
D∆k ln fRijt

]
+ 2 cov

[
∆k ln eP3

ijt , a
D∆k ln fRijt

]
= σ2σ2

∆k ln eP1
ij

+ (1− σ)2σ2
∆k ln eP2

ij
+ σ2

∆ ln eP3
ij

+ (aD)2σ2
∆k ln fRij

. (D.24)

Using the redefined ψijt from above:

var(ψijt) = var

[
− 1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt + aS∆k ln fRijt

]
=

(
1

1 + γ

)2

var(∆k ln eP3
ijt ) +

(
1

1 + γ

)2

var(∆k ln eP5
ijt ) + (aS)2var(∆k ln fRijt)

+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt ,−
1

1 + γ
∆k ln eP5

ijt

]
+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt , a
S∆k ln fRijt

]
+ 2 cov

[
− 1

1 + γ
∆k ln eP5

ijt , a
S∆k ln fRijt

]
=

(
1

1 + γ

)2

σ2
∆k ln eP3

ij
+

(
1

1 + γ

)2

σ2
∆k ln eP5

ij
+ (aS)2σ2

∆k ln fRij
. (D.25)

The latter two results can be inserted into the RHS of equation (48) to produce an easily

adjusted version of the RHS of equation (49).
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