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Abstract 

We study the effects of in utero exposure to climate change induced high ocean salinity levels on 

children’s anthropometric outcomes. Leveraging six geo-referenced waves of the Bangladesh 

Demographic and Health Surveys merged with gridded data on ocean salinity, ocean chemistry 

and weather indicators (temperature, rainfall and humidity) from 1993 to 2018, we find that a one 

standard deviation increase in in utero salinity exposure leads to a 0.11 standard deviation decline 

in height-for-age. Effects on weight-for-height and weight-for-age for a similar magnitude increase 

in salinity are 0.13 and 0.15 standard deviations, respectively. Analyses of parental investments 

and health-seeking behaviors demonstrate that compensating actions along these dimensions to 

attenuate the detrimental effects of salinity are few and restricted to poorer households. Using 

satellite-sourced datasets on agriculture and land-use, we find that increasing salinity constrains 

farmers’ land use choices, leading to lower agricultural profitability. In particular, the effects of 

salinity on child health originate in areas with lower agricultural intensity caused by the 

progressive salinization of productive lands. These results highlight the costs of environmental 

insults on early-life health outcomes in vulnerable populations. 

Key Words: Ocean salinity, early-life health, climate change, height-for-age, weight-for-height, 
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1. Introduction 

 

40% of the world’s population lives within 100 km of the coast, and 10% lives in coastal 

areas less than 10 meters above sea level (United Nations, 2017). Due to anthropogenic climate 

change, coastal areas around the world are increasingly threatened by changing oceanic conditions 

such as coastal and tidal flooding, shoreline recession, and progressive salination of coastal land 

and water. Vulnerable coastal communities in the developing world, especially women and 

children, are particularly at risk due to the lack of adequate resources to adapt and to build 

resilience against these changes.  

While there is growing evidence that climate change brings persistent negative impacts in 

the developing world on mortality (Banerjee and Maharaj 2020, Burgess et al. 2017, Deschenes 

2014), human capital (Fishman et al. 2019, Maccini and Yang 2009), and nutrition (Blom et al. 

2022, Randell et al. 2020), most studies from that literature focus on climate-induced temperature 

and precipitation extremes. A smaller literature has focused on the effect of equally important 

climate-induced changes such as coastal flooding (Bakkensen and Barrage 2022, Bernstein 2019, 

Diaz 2016, Gopalakrishnan et al. 2016,) and ocean acidification (Armand and Taveras 2022). With 

global communities facing increasing threats from climate change, there is an urgent need for 

accurate assessments of how oceanic change embodied in features such as rising salinization, 

generates disproportionately heavier burdens for resource-constrained women and children in the 

developing world. In this study, we address this research gap by analyzing the early-life health 

impacts of in utero exposure to heightened salinity in coastal communities. 

We focus on the coastal belt of Bangladesh, a low-lying area home to over 10 million poor 

people residing in one of the most severely impacted regions of the world in terms of saltwater 

intrusion. Bangladesh already faces significant challenges related to food security and 
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malnutrition, with over 30% of children under the age of five classified as being stunted in 2018.1 

In recent decades, climate change has caused increasingly rapid salination in coastal Bangladesh 

up to 100 kms inland (Rahman and Bhattacharya 2006), affecting local agricultural practices and 

ecosystems. Such impacts are likely to have further exacerbated poor health in early childhood.     

To study how exposure to elevated salinity levels during pregnancy shapes early-life 

health, we construct a novel dataset linking gridded data on salinity, weather, ocean chemistry, 

and child health outcomes. We obtain geo-referenced monthly data on sea water salinity and other 

variables at a resolution of 0.0830 x 0.0830 (approximately 9 km × 9 km), from January 1993 to 

December 2019, from the Copernicus Marine Environment Monitoring Service (CMEMS). We 

then combine this data with children’s standardized anthropometric measures (height-for-age, 

weight-for-height, and weight-for-age z-scores) from six geo-referenced waves of the Bangladesh 

Demographic and Health Surveys (BDHS) to match monthly local variation in salinity levels to 

birth histories ranging almost a quarter of a century. An advantage of using ocean salinity measures 

is that respondents are unlikely to be fully aware of changing circumstances in ocean waters that 

are distant from onshore, and thus less likely to modify their compensatory behavior 

correspondingly.2 This makes this measure relatively more exogenous than river salinity, for 

example, which is likely to be directly observed given closer proximity.  

We leverage a saturated model that controls for unobserved heterogeneity including 

location-specific seasonality and regional trends, while conditioning on a host of child, mother, 

and household controls. We exploit exogenous variation in average salinity levels nine months 

preceding the child’s month of birth, measured as deviations from long-run month and annual 

 
1 World Bank data series: Prevalence of stunting, Bangladesh. 

https://data.worldbank.org/indicator/SH.STA.STNT.ZS?locations=BD. Accessed 6/3/2023. 
2 A similar argument is based by Armand and Taveras (2022) in their study on ocean acidification. 

https://data.worldbank.org/indicator/SH.STA.STNT.ZS?locations=BD
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trends, to identify impacts on child health outcomes. We find that exogenous deviations in in utero 

salinity exposure leads to measurable negative effects on child health in early-life. A one standard 

deviation increase in in utero salinity leads to a 0.11 standard deviation decline in the child’s 

height-for-age z-score as of age five, while also increasing the prevalence of stunting and severe 

stunting by 3.1 and 5.7 percentage points, respectively. Increased salinity adversely impacts 

weight-for-height and weight-for-age as well. Hence, exposure during pregnancy has scarring 

effects that result in children being relatively shorter and lighter as of age five. These results 

withstand a battery of robustness checks using alternative measures of exposure, nonlinear 

specifications, and additional ocean chemistry controls. We further ensure that our results are not 

driven by selective fertility or migration.  

We then undertake a careful exploration of possible mechanisms to gain insights into the 

channels through which salinity affects early-life outcomes. While we are unable to directly assess 

the physiological impacts of maternal sodium intake given data, we note that the average 

Bangladeshi does not consume more sodium than the world average (Khan et al. 2014, Powles et 

al. 2013). In light of this, we focus on income and examine whether agricultural production is 

significantly impacted by salinity. We also consider whether there are compensatory healthcare 

investments by parents. We find that increasing salinity constrains farmers’ land use choices, 

reducing acreage for dry season irrigated cropland and increasing acreage for monsoon season 

rainfed cropland (consistent with Shelly et al. 2016). While this switch helps to cope with salty 

irrigation water that is harmful to crops, it reduces overall yield and profitability. We find that the 

negative effects of salinity on child health primarily originate in the sample of children resident in 

clusters experiencing lower agricultural intensity (reduced pasture area, grazing area, rice area, 

and total rainfed area) due to the progressive salinization of lands.  
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We next use information on parental investments and health-seeking behavior to evaluate 

whether such investments react to salinity exposure.  In this we are guided by the literature on how 

parental investments may respond to early-life shocks (Adhvaryu and Nyshadham 2016, Almond 

and Mazumder 2013), and the fact that the effects of prenatal shocks may be confounded by 

parental actions (Almond and Currie 2011, Barker 1995).  We find that there are few corresponding 

compensating behaviors to attenuate the detrimental effects of salinity in prenatal and antenatal 

care, including vaccinations, number of antenatal visits, iron supplementation during pregnancy, 

skilled prenatal care, skilled attendance at birth, and institutional delivery. In fact, among poorer 

households, salinity significantly detracts actions along several of these dimensions which we 

hypothesize may be due to the increasing opportunity cost of maternal time.  

Our study makes several contributions. First, we contribute to the literature on quantifying 

the social impact of climate change and the social cost of carbon, especially its impacts on 

vulnerable communities in the developing world. While extensive evidence has been provided on 

the effect of temperature and rainfall, for example on agriculture (Moore et al. 2017, Schlenker 

and Roberts 2009), mortality (Barreca 2012, Burgess et al. 2017, Deschenes and Greenstone 2011), 

or labor productivity (Liu et al. 2023, Park et al. 2020, Zhang et al. 2018), a relatively small 

literature has focused on estimating ocean-related hazards. Within this space, the focus has been 

on estimating the physical implications of sea-level rise including shoreline erosion and coastal 

flooding (Bernstein et al. 2019, Bosello et al. 2007, Depsky et al. 2022, Diaz 2016, Gopalakrishnan 

et al. 2016). To the best of our knowledge, Armand and Taveras (2022) is the only other study that 

offers important insights on the effects of climate-induced oceanic alterations on human 

development. Armand and Taveras (2022) analyzed the effect of ocean acidification in a cross-

country setting and showed, among other things, that ocean acidification reduces the abundance 
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of nature’s wealth (fish species) which leads to increased neonatal mortality in coastal areas. We 

complement this literature by quantifying the impact of another important oceanic-induced change, 

salt intrusion, its persistent scarring effect throughout early childhood, and we systematically 

analyze the various social and behavioral mechanisms through which salinity affects early-life 

health outcomes. More specifically, after demonstrating that salinity exerts harmful effects on 

early-life child health (conditional on ocean acidification and other measures of ocean chemistry), 

we leverage satellite-sourced datasets on agriculture and land-use to document that increased 

salinity hurts agricultural productivity, thereby highlighting potential income pathways and 

adaptation strategies at play. In exploring parental and health-seeking investments, we reveal 

changes in behaviors, particularly among poorer households, where higher salinity exposure leads 

to decreased early childhood investments. Our analyses also allow us to pin-point the timing of 

exposure that has the largest impacts, and how those impacts persist over the medium run. 

Anecdotally, given accelerated sea level rise due to changing climate, increasing salinity is the key 

issue of concern affecting large numbers of people across many low-lying countries in the world.    

Second, we contribute to the body of work that considers the effects of in utero shocks on 

early-life health outcomes, (Almond 2006, Almond and Currie 2011, Almond and Mazumder 

2011, Banerjee et al. 2010, Barker 1995, Bleakley 2007), and specifically the effects of 

environmental shocks (Adhvaryu et al. 2019, DeCicca and Malak 2020, Rocha and Soares 2015, 

Wilde et al. 2017) and how these, in turn, shape development outcomes (Dell et al. 2012, Maccini 

and Yang 2009). We contribute to this literature by evaluating a previously under-documented, yet 

extremely important environmental insult that is expected to further intensify due to climate 

change, and that affects millions of poor people resident in coastal communities globally. The 

strength of our paper also lies in the use of a novel database that provides scope to understand the 
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impacts of climate change on health, while providing the richness of information required to 

disentangle parental, agricultural, and selection effects in the context of a developing country. 

Third, we contribute to the literature on understanding the public health implications of 

salinity and sodium intake, especially on maternal and early child health impacts. While the effect 

of sodium intake on adult health has been extensively studied (Hunter et al. 2022), few studies 

have considered its effects on maternal and children’s health. In this realm, studies have found that 

exposure to salinity increases pregnancy-related complications (Khan et al. 2011, Khan et al. 2014, 

Thompson et al. 2022) as well as infant mortality and morbidity (Dasgupta et al. 2016, Naser et al. 

2020). A majority of this literature focuses on either only during or shortly after pregnancy. We 

contribute in this area by documenting a persistent link between salinity and later-life development 

beyond prenatal and neonatal periods, while simultaneously evaluating the socio-economic and 

agricultural mechanisms that underlie the linkage as manifested through changes in land use and 

healthcare investments.  

While our study focuses on Bangladesh to ensure that we account for the multifaceted 

factors that correlate with ground-truth realities and distinctive attributes of this population, our 

findings have global significance that extend far beyond the confines of just this country. Due to 

climate change, vulnerable populations in coastal and low-lying regions across many continents 

are exposed to escalating saltwater intrusion. Hence, the pressing need to address harmful 

consequences of sea-level rise is a common thread across numerous countries. For instance, 

salinization has destroyed several self-sufficient farming communities in Senegal, transforming 

them into dependent food importers, while also disrupting and threatening habitats with 

concomitant effects on livelihoods of farmers and fishermen. Similar challenges face the Niger 

Delta region in Nigeria, the Mekong River Delta in south Vietnam (which has witnessed 
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destruction of coconut groves, rice paddies, and other agricultural resources), and the Bengal Delta 

region in India; these are a few selected examples from an extensive list of countries combatting 

coastal erosion and heightened salinity due to climate change. These examples underline that while 

our focus is the detrimental effects of salinity in Bangladesh, the findings are relevant for many 

other contexts, and hold lessons for populations more globally. 

Experts agree that the deleterious effects of climate change will exacerbate preexisting 

vulnerabilities and inequalities, and that there is an urgent need for meaningful action to 

circumvent the coming challenges (Stern 2022). The results of our study on the scarring effects of 

salinization on fetal health further underline these facts. Understanding how climate change related 

shocks impair child health is important given that we know that shocks in childhood have long-

lasting consequences that resonate long into the future (Currie and Vogl 2013, Edwards 2017), and 

in order to focus attention on engineering effective coping strategies in environments with low 

resources and restricted adaptive capacities.  

2. Background  

2.1. Salination in coastal Bangladesh 

Bangladesh, a low-lying deltaic country with a flat topography, is home to one of the largest 

populations vulnerable to climate change. Criss-crossed by the Brahmaputra, the Ganges, and the 

Meghna rivers, and located at the tip of the Bay of Bengal, the country is continuously subject to 

sea level rise, tidal surges, shoreline recession, strong cyclones, and riverbank erosion (Rahman et 

al. 2014). Coastal areas along the Bay of Bengal covering about 3.22 million hectares (Rahman et 

al. 2011), more than 30% of the country’s cultivable land (Rasel et al. 2013) and home to around 
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11.80 million poor people located across 19 districts (Dasgupta et al. 2018), are particularly 

susceptible to seawater intrusion and increased salinity levels.3 

The southwest coastal region, lying about 1.5 meters above mean sea-level, is most 

threatened by increases in water salinity. Annual mean sea-level data for the period 1983-2003 

from the Permanent Service for Mean Sea Level (PSMSL) shows that sea-level in the southwest 

coastal region has increased by 122 mm between 1983 and 2003, with a yearly average increase 

of roughly twice the global average of 3 mm per year over this 20-year period.4 As a result, salt 

intrusion is rapidly increasing in coastal areas. A report from the Soil Resource Development 

Institute (SRDI, 2010) from the Ministry of Agriculture shows that the amount of salt-affected 

area during four decades (1973-2009) in coastal areas has increased by 26.7%. Storm surges, the 

flow of saline groundwater during the dry season coupled with insufficient rainfall to lower saline 

concentrations, warmer temperatures that increase evaporation, and tidal inundation in the wet 

season, all affect salinity (Baten et al. 2015, Dasgupta et al. 2016). Rising sea level advances salty 

ocean water further inland, reaching up to several miles upstream. In addition, tidal effects and 

upstream freshwater flows cause sea water to travel many miles inland, aggravating the buildup of 

salt in major rivers. Ground water and surface water connected to these major rivers through water 

inlets and estuaries also experience increased average salinity concentrations as a consequence 

(Alam et al. 2017). These are some of the ways in which offshore saline concentrations can have 

large effects on salinity many miles inland. These, in turn, affect quality of livelihoods, agricultural 

yields, cropping intensity, biodiversity, and health (Mahmuduzzaman et al. 2014). 

 
3 The Bureau of Statistics in Bangladesh, the World Food Program, and the World Bank, carried out a poverty-

mapping exercise to estimate the vulnerable population in coastal areas (Dasgupta et al. 2018).  
4 The data used is for station ID 1451 (Hiron Point, Bangladesh). More information can be obtained from psmsl.org. 

The data authority for this source is the Bangladesh Inland Water Department of Hydrography, Transport Authority.  
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Higher salinity levels distort normal cropping patterns and impede agricultural productivity 

and economic development. 5  Heavy reliance on the agricultural sector implies that saltwater 

intrusion has significant ecological and socioeconomic implications, with possible spillover effects 

for the rest of the economy. Hossain et al. (2018) identifies the main coastal communities affected 

by salt intrusion. Crop farmers, Sundarbans (mangroves) – dependent communities, and landless 

agricultural laborers are amongst the most vulnerable. Increased salinization causes drinking water 

shortages, food insecurity, degradation of soil quality, unemployment, and reduction in tree 

coverage, posing serious threats to public health and primary production (Dasgupta et al. 2015).  

2.2. The physiological impact of excessive sodium 

The physiological link between sodium intake and health has been studied extensively by the 

medical science literature.6 Sodium intake increases the risk of diseases mainly through renal and 

vascular functions (Ando and Fujita, 2012; Rodriguez-Iturbe et al. 2007). The medical literature 

has concluded that excessive salt intake is a significant contributor to high blood pressure via both 

observational studies (Mente et al. 2014) and randomized control trials (Huang et al. 2020). The 

link has also been established, with less confidence, between excessive sodium intake and 

cardiovascular diseases (Mente et al. 2018; Taylor et al. 2011; Welsh et al. 2019).  Excessive 

sodium intake can also lead to a number of other health conditions, most of them in later life, 

including hypertension, stomach cancer, obesity, and urinary and kidney diseases ( Hunter et al. 

2022, World Health Organization, 2012).  

 
5 The agricultural sector (agriculture, forestry, and fishing, value added) contributed 12.7 percent of Bangladesh’s 

GDP in 2019, and employed 38.3 percent of the labor force (WDI, World Bank 2021). 
6 The rest of the mineral ingredients in seawater-induced salinity, including calcium, magnesium, and potassium, 

have mostly positive health impacts: calcium strengthens bone structure; magnesium decreases the risk of a series of 

diseases, including hypertension, cardiovascular diseases, and diabetes; potassium reduces the negative health 

impact of sodium intake on blood pressure and heart diseases. 
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A smaller public health literature focuses specifically on the impact of sodium intake on 

maternal and neonatal health outcomes. Through observational studies, sodium has been linked to 

hypertension, preeclampsia, and low-birth weight which can impact stunting and underweight 

(Khan et al. 2011, 2014, Pizzi et al. 2014, Thompson et al. 2022). No study, to the best of our 

knowledge, has probed the link between maternal sodium exposure and children’s outcomes 

beyond the neonatal stage. 

It is important to emphasize in this context that even though many coastal communities in 

Bangladesh are exposed to salt, on average, intake is not excessively high. Powles et al. (2013) 

found that the average Bangladeshi adult consumes 9 grams of salt per day. While this exceeds the 

World Health Organization recommended level of 5 grams per day (World Health Organization, 

2012), average sodium intake in Bangladesh is slightly below the global average sodium intake of 

10 grams per day, and far below other coastal Asian countries like China, Korea, Myanmar, and 

Thailand. This means that the physiological mechanism tied to sodium would not be able to explain 

the bulk of stunting and/or underweight status in Bangladesh.   

2.3 The socio-economic impact of salinity exposure 

In parallel, social scientists and researchers have probed the link between salinity exposure 

and a wide range of public health outcomes. Dasgupta et al. (2016) documents the association 

between mother’s salinity exposure in the last month of pregnancy and infant mortality. Nahian et 

al. (2018) investigates the correlation between water salinity and health care crises in coastal 

Bangladesh, while Naser et al. (2020) finds a U-shaped association between drinking water salinity 

and infant and neonatal mortality in Bangladesh. Chakraborty et al. (2019), using a cross-sectional 

study in three coastal sub-districts, finds that excess drinking water salinity is associated with 

increased hospital visits for cardio-vascular diseases, diarrhea, and abdominal pain. Akter (2019) 
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finds that exposure to excessive drinking water salinity in eight southwest coastal districts 

decreases the grade advancement of 7 to 12-year-old children, with poverty exacerbating the main 

effect.  

Beyond this, there are impacts on agricultural production and aquaculture. The shortage of 

grazing land and fodder crops leads to lower milk production, less cattle-rearing, reduced stock of 

freshwater fish species, and other agro-biodiversity changes that affect households’ diet (Alam et 

al. 2017). Baten et al. (2015) explains that irrigated water demand is affected by saltwater intrusion 

in surface water, while Rahman et al. (2011) considers the impact of salinity on agro-biodiversity 

to find that the use of brackish water for irrigation limits the cultivation of rice and vegetables in 

the dry season.  

Ziaul Haider et al. (2013) studies the impact of salinity on farmers’ livelihood strategies. 

The study finds that while salinity motivates adaptations such as shrimp cultivation, detrimental 

effects on agricultural income and employment opportunities still result leading to lower living 

standards. Anik et al. (2018) investigates the impact of salinity stress on livelihood choices of rural 

households in southwestern Bangladesh to conclude that households highly dependent on 

agriculture suffer major crop losses due to high salinity levels. Our results confirm that reduced 

agricultural productivity is an important mechanism that underlies the negative consequences of 

salinity on early-life health. 

3. Data 

3.1. Children’s health outcomes 

We use 6 rounds of geo-referenced Demographic and Health Surveys (BDHS) for 

Bangladesh from 1999, 2004, 2007, 2011, 2014, and 2017. The BDHS is a stratified two-stage 

nationally representative sample. In the first stage, enumeration areas (EAs) are randomly chosen 
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from the Population and Housing Census of Bangladesh and are used as the sampling frame, with 

stratification by region.7 In the second stage, within the selected EAs (or clusters), a number of 

households are randomly selected to be surveyed. We use anthropometric measures (height-for-

age z-score (HAZ), weight-for-height z-score (WAH), and weight-for-age z-score (WAZ)) for all 

children aged 0-5, collected in households within which women of reproductive age (15-49 years) 

were interviewed. We create indicator variables for stunting, wasting, and undernutrition using 

these measures. We complement the early childhood outcomes with additional child and household 

characteristics and other health-related measures. We use the geographic location of each surveyed 

cluster over rounds to match children by month and year of birth to geo-coded salinity and weather 

data at the month and year level. 8,9  

To identify the BDHS clusters that are most likely to be affected by rising seawater salinity, 

we use a measure of proximity to the ocean’s shore. For each cluster, we calculate the minimum 

distance between the cluster’s location and the closest shoreline, using the Global Self-Consistent, 

High Resolution Geography Dataset (GSHHG) (Wessel and Smith 1996). Following the literature, 

we define coastal communities as those living within 100 km from the ocean, and we classify 

households living in clusters within 40 km from the ocean as being the most vulnerable. Figure 1 

depicts the location of all clusters in our sample. There are 1000 unique clusters among coastal 

communities, and 630 unique clusters in the sample of vulnerable coastal communities. 

 
7 Bangladesh has 8 administrative divisions: Barisal, Chattogram, Dhaka, Khulna, Mymensingh, Rajshahi, Rangpur, 

and Sylhet. Each division is further divided into zilas, and zilas in turn contain upazilas.  
8 We use cluster locations obtained by recording the GPS coordinates of each cluster’s center during the survey’s 

fieldwork or listing stage. Since DHS surveys contain sensitive information, the locations are altered through a process 

known as displacement or geo-masking to safeguard the privacy of survey participants. Urban clusters and rural 

clusters are displaced up to 2 and 10 km, respectively. However, the displacement procedure ensures that the clusters 

remain within the same administrative units so that the data can be analyzed appropriately within administrative 

frameworks. For more details, please see Burgert et al. (2013).  
9 Michler et al. (2022) indicates that on average, commonly employed privacy protection techniques do not 

significantly impact regression estimates. 
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3.2. Ocean salinity and chemistry  

Our ocean salinity and chemistry data come from the Copernicus Marine Environment 

Monitoring Service (CMEMS), which is drawn from both satellite Earth Observation and in-situ 

(non-space) data.10 The gridded dataset has a spatial resolution of 0.083° x 0.083°  (approximately 

9 km × 9 km), for the period January 1993 to December 2019.11 We obtain monthly measures on 

seawater salinity, seawater temperature, sea surface height (surface value), eastward and 

northward wind velocity, and the ocean’s pH levels over these years.12 Specifically, our salinity 

metric measures the amount of dissolved salt in parts per thousand and is commonly reported in 

practical salinity units (psu).  

Following the environmental economics literature, (Deschenes and Greenstone 2011, 

Zhang et al. 2017), we use inverse-distance matching to obtain measures of local climate at the 

cluster level. For each cluster, we calculate the weighted average of oceanic chemistry metrics 

from the five closest grid points, weighting each point by the inverse of the squared distance from 

the cluster’s location so that each grid point has a local influence that diminishes with distance.13  

 
10 We use the global ocean 1/12° physical reanalysis (GLORYS12V1) product: “global ocean eddy-resolving reanalysis 

covering the altimetry”. 
11 The “Global_Reanalysis_PHY_001_030” product contains three datasets (the 3D daily mean fields, monthly mean 

fields, and monthly climatology mean fields). We use the dataset containing monthly mean fields. For more 

information on the validation methodology and series of diagnostics used for the dataset, see Drevillon (2018). 
12 The original file format is the Network Common Data Form (NetCDF) and NetCDF-4. We process these files in 

Python to obtain month-year level data from January 1993 onwards. All variables considered here are on the same 

regular grid points.  
13 Let c denote a DHS cluster, i a station, and 𝑛𝑐 is the number of stations that relate to cluster c (we choose 𝑛𝑐 = 5). 

Let 𝑑𝑖𝑐
2  be the squared distance between cluster c and station i. We thus define the weight 𝑊𝑖𝑐 as follows: 

𝑊𝑖𝑐 =

1
𝑑𝑖𝑐

2

∑
1

𝑑𝑘𝑐
2

𝑛𝑐
𝑘=1

     𝑓𝑜𝑟 𝑑𝑖𝑐  ≥ 𝑜, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖, 𝑐 

Thus, temperature �̅�𝑐 at cluster c equals to: 

�̅�𝑐 =  ∑ 𝑊𝑖𝑐𝑇𝑖𝑐 , with ∑ 𝑊𝑖𝑐 = 1 

𝑛𝑐

𝑖=1

𝑛𝑐

𝑖=1

 

where 𝑇𝑖𝑐 is the temperature at station i related to cluster c. Simply, 𝑇𝑖𝑐 is weighted by the inverse of the squared 

distance given the mean temperature at station i (see De Mesnard (2013) for more details on the use of the IDW 

method in models estimating pollution impact, for instance). 
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3.3. Weather data 

Since other features of weather are likely to be correlated with both children’s health and 

salinity levels, we include a series of climatic variables in our analyses.14 We obtain weather data 

from the Bangladesh Meteorological Department (BMD) which maintains records of all 

meteorological events and archives weather and climate data. We obtain station-month-year level 

data for all 35 stations across Bangladesh from 1970 to 2019, including data on minimum and 

maximum temperature, rainfall, and humidity.15 Weather data is interpolated into cluster-level 

measures using inverse distance weighting of five closest neighbors, and then 9-month average 

values (preceding the child’s time of birth) are merged with the child’s month and year of birth in 

the BDHS data, consistent with the approach for the ocean chemistry variables.  

3.4. Summary statistics 

Table 1 provides summary statistics for the sample that is most vulnerable, that is, within 

40 kms of the coastline. The outcomes of interest are continuous for HAZ, WAH, and WAZ. The 

binary variables stunted and severely stunted equal to one if child HAZ falls below -2 and -3 

standard deviations, respectively. Similarly, wasted and severely wasted are binary variables that 

equal one if child WAH falls below -2 and -3 standard deviations, respectively. Underweight and 

severely underweight are constructed from WAZ in a similar fashion, following the World Health 

Organization guidelines. In Panel A, the mean HAZ is -1.80, and approximately 45% and 19% of 

children aged 0-5 years are stunted and severely stunted, respectively. The mean for WAH and 

 
14  The literature posits that climate change affects the distribution of several climatic variables, and that any model 

that attempts to evaluate the distributional effects of climate change will most likely produce biased results if other 

climatic variables are omitted. Barreca (2012) for instance finds that humidity, like temperature, is an important 

determinant of mortality. Zhang et al. (2017) finds that omitting humidity tends to over-predict the cost of climate 

change on crop yields.  
15 Auffhammer et al. (2013) and Zhang et al. (2017) highlight the importance of having a continuous weather record 

(and thus few missing observations) when averaging station-data across space to ensure relatively lower loss of 

weather variation when fixed-effects are used in the empirical model. Although these data do not have a lot of missing 

values, we complete the series for the relatively few missing observations by using IDW spatial interpolation methods. 
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WAZ are -0.91 and -1.67, respectively, and almost 15% and 39% of children in this sample are 

wasted or underweight, respectively.16 

In Panel B, the average salinity level during the 9 months preceding the child’s month of 

birth is 12.59 psu, with a standard deviation of 4.40 psu.17 Ocean’s pH averages 8.20. Panel C 

reports the summary statistics for weather-related variables used as controls in the regressions. 

Panel D provides information on the characteristics of children, mothers and fathers in our sample. 

Half of the children are male, and the average child is 29.31 months old. The average birth order 

is 2.69, and mean mother’s age at first birth is 17.95 years. Estimates reveal that 24% and 26% of 

mothers and fathers in our sample had no education, respectively. In 87% of observations, the head 

of the household is male.  

3.5. The distribution and seasonality of ocean salinity 

To visualize climate-induced change in ocean salinity over time, Figure 2 provides kernel 

densities plots for average salinity levels.18 Panel A considers the kernel densities for salinity levels 

associated with clusters within 100 km of the ocean for two periods: 1995-2002 and 2011-2018. 

Panel B includes salinity for the vulnerable coastal clusters living within 40 km of the ocean for 

the same two periods. In both panels, there is a right-ward shift in the distribution over time.  

Ocean salinity varies with the onset and end of the monsoon period. Panel A of Figure 3 

shows the seasonal variation in salinity (monthly average over years) for ocean points matched to 

coastal clusters. We observe differences in salinity levels over the pre-and post-monsoon seasons; 

 
16 Figure A1 in the appendix shows that there is substantial heterogeneity in the nutritional status of children across 

sub-districts in Bangladesh.   
17 The WHO recommends no more than 5 grams of salt per day but there is no clear translation between this metric 

and recommended salinity exposure in practical salinity units. Nasrin et al. (2020) notes various categories for salinity 

levels based on optimal conditions for crop growth and soil quality: low saline (0.5 to 5 psu), moderate saline (5 to 18 

psu) and high saline (18 to 30 psu).  An average of 12.59 psu in the 9 months preceding the child’s month of birth thus 

falls in the moderate category, based on these benchmarks. 
18 In addition to examining the temporal progression of salinity in Figures 2 and 3, we also plotted a pair of heatmaps 

in Figure A2 to visualize the spatial distribution of ocean salinity. 
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in particular, salinity increases in the post-monsoon period (October) through the pre-monsoon 

month of May, after which it declines. Surface salinity in coastal waters is higher in the dry season 

due to lower rainfall and river discharge, which allows saline water to travel further upstream in 

major rivers through tidal effects and stronger estuarine exchange flows (Baten 2015, Dasgupta et 

al. 2015, Shammi et al. 2019). In addition to the monsoons, increases in ice melt in the Himalayas 

during May through October generates a higher upstream flow of freshwater and river water 

discharge, thus reducing salinity in coastal areas (Mahmuduzzaman et al. 2014). Our empirical 

methodology outlined below is cognizant of these seasonal changes. Panel B of Figure 3 shows 

the distribution of ocean salinity for ocean points matched to sampled coastal clusters. The 

distribution is mostly skewed to the right, but there is also variation in levels across clusters, 

revealing that the identifying variation stems from the majority of clusters and not just from a few 

outliers. Taken together, the two panels of Figure 3 illustrate that ocean salinity exhibits 

considerable variation across months and clusters.19 

4. Empirical strategy 

To test for the effects of variation in in utero salinity on early-life health, we employ the 

following specification: 

𝑦𝑖𝑐𝑑𝑚𝑡 = 𝛽𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑑𝑚𝑡 + 𝑋𝑖𝑐𝑑𝑚𝑡
′ 𝛾 + 𝜇𝑑 + 𝜎𝑚 + 𝜆𝑡 +  𝜂𝑚𝑡 + 𝜃𝑑𝑚 + Φ𝑑𝑡 + 𝜖𝑖𝑐𝑑𝑚𝑡            (1) 

𝑦𝑖𝑐𝑑𝑚𝑡 is the health outcome for child i, born in month m in year t, and whose mother was surveyed 

in cluster c in district d.20 We consider the effects of salinity exposure in the 9 month in utero 

 
19 We control for river salinity with our measures of land cover specific to brackish water and tree cover flooded with 

saline water (please see Figure A3 which shows the land cover map for 1993 superimposed on a shapefile containing 

the coordinates of the clusters in 1999). 
20 As we note above, there are more than 1000 unique clusters when we consider all coastal communities, and 630 

unique clusters in the vulnerable coastal communities. Given this, it is not possible to include cluster fixed-effects and 

their interactions with month and year of birth dummies in our models. Instead, we have 19 unique district fixed-

effects in the sample of vulnerable communities, additionally interacted separately with month and year of birth as 

equation (1) notes. 
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phase, and construct 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑑𝑚𝑡 as the average value of ocean salinity (constructed from the 5 

closest stations, as described above) in the 9 months preceding the child’s month of birth in cluster 

c. The coefficient of interest is 𝛽, and is expected to be negative for HAZ, WAH and WAZ, and 

positive when the binary indicators for stunting, wasting, and underweight are evaluated. 

𝑋𝑖𝑐𝑑𝑚𝑡 is a vector of variables including child, mother, and household characteristics, and 

time-varying weather and other ocean chemistry controls that could potentially be correlated with 

salinity while also determining variation in early-life health. More specifically, we include child’s 

age, gender, and birth order, mother’s age at first birth, a dummy variable that equals one if the 

mother is uneducated, a dummy variable that equals one if the father is uneducated, mother’s 

height, and the gender of the household head.21 In terms of land-based measures, we include time-

varying minimum and maximum temperature, rainfall, the interaction between 

minimum/maximum temperature and rainfall, and humidity. Other ocean controls include those 

for ocean acidity (pH value) which is always included, and seawater temperature, sea surface 

height, and ocean wind velocity which are additionally included in robustness checks discussed 

below. 

Equation (1) includes a series of temporal and spatial fixed-effects to control for 

unobserved heterogeneity in seasonality and in regional trends. District fixed-effects (𝜇𝑑) account 

for the unobserved time-invariant characteristics specific to the districts in which the clusters 

reside. We include month of birth fixed-effects (𝜎𝑚) to account for seasonal factors. Year of birth 

fixed-effects (𝜆𝑡) and year by month fixed-effects (𝜂𝑚𝑡) are included to control for idiosyncratic 

changes common across clusters. We also include district fixed-effects interacted with month of 

birth (𝜃𝑑𝑚) to control for local seasonal variation, and Φ𝑑𝑡 which are district-year of birth fixed-

 
21 We run extensive heterogeneity checks with wealth measures below; in this baseline model, parents’ (especially 

father’s) educational level proxies for household wealth. 
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effects to control for district-specific trends in cohort nutritional status, and thus for any local 

annual patterns in health outcomes. The presence of these fixed-effects implies that we estimate 

the impact of deviations in ocean salinity over long-run month and year trends, facilitating causal 

interpretation (Dell et al. 2014). The error term is 𝜖𝑖𝑐𝑑𝑚𝑡. Following DHS guidance, regressions 

are weighted so estimates may be interpreted as representative, and we report standard errors 

clustered at the cluster level (Abadie et al. 2022). The identifying assumption is that there are no 

omitted variables that are correlated with both the salinity measure and with child health outcomes, 

so that exposure to salinity levels in utero, conditional on the other variables in the models, is 

unanticipated and as good as random.  

Since oceanic variables are likely correlated, we employ a double-lasso variable strategy 

to guide our selection of climatic and oceanic variables. The double-lasso strategy works in two 

steps: the first step regresses the treatment variable (in our case ocean salinity) on the full set of 

control variables in a lasso regression; the second step regresses the outcome variable on the 

treatment variable and the selected set of variables from the first step. The double-lasso strategy 

provides a robust model selection framework (Belloni et al. 2014). 

We implement the double-lasso estimator on the within-40km-to-ocean sample with all 

nine outcome variables using three different selection methods: full cross-validation, adaptive 

selection, and plugin-adaptive selection. All variables in our main model are included in the 

double-lasso selection, demeaned with the same set of saturated fixed-effects. 22  We force 

household controls and salinity to remain in the model, leaving oceanic and weather variables to 

be selected. Table A1 presents results from running the double-lasso algorithm on 27 candidate 

 
22 Demeaning is accomplished by extracting the residuals from the regression y = 1 + fixed effects. As recommended 

in Luoa et al. (2017), we double-checked the residuals obtained from the demeaning regression and found that the 

within-group means are minimal (that is, close to zero and much smaller than the original standard deviation of the 

variable).  
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models and specifications (3 selection methods for each of the 9 outcome variables), which we use 

as a guide for the estimations that follow.  

5. Results 

5.1. The effects of in utero salinity exposure 

In Table 2, we present results from the regression in equation (1). In Panel A, we restrict 

the sample to vulnerable coastal areas (DHS clusters within 40 km of the ocean), and in Panel B, 

we restrict the sample to all DHS clusters in coastal areas, that is those within 100 km of the ocean. 

Focusing on the coefficients in Panel A, we see consistently negative effects of in utero exposure 

to ocean salinity on children’s anthropometric indicators.23 In column (1), a one standard deviation 

(SD) increase in in utero salinity leads to a 0.11 SD decline in the child’s HAZ.24 In columns (2) 

and (3), the results are in accordance with our expectations – in utero salinity exposure has 

significant effects on the probability that the child is stunted and severely stunted. A one SD 

increase in salinity increases the prevalence of stunting and severe stunting by 3.1 and 5.7 

percentage points, respectively. When the sample is restricted to all coastal communities in Panel 

B, while the coefficients are of smaller magnitudes, the negative impacts of salinity exposure are 

still mostly evident.  

In columns (4) through (6), we consider WAH and binary variables for wasted and severely 

wasted. Column (4) of Panel A indicates that the effect of a one SD increase in utero salinity leads 

to a 0.13 SD decrease in WAH, with significant effects evident for wasting and severe wasting. As 

above, corresponding estimates in Panel B are consistent.  

 
23 We assume a gestation period of 9 months but have checked sensitivity when we extend to 10 months (see Table 

A2, also discussed below). 
24 The coefficient on salinity exposure in column (1) of Table 2 is -0.025. We multiply this coefficient by the standard 

deviation of salinity (4.40) in order to obtain the 0.11 SD decline.   
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In columns (7) to (9), the dependent variables relate to WAZ. The results again support the 

hypothesis that in utero exposure to salinity exerts detrimental effects on children’s health. Higher 

in utero salinity levels are associated with lower WAZ; one SD increase in salinity decreases WAZ 

by 0.15 SD (representing 13.4 % of the total variations in WAZ). Salinity exposure also leads to 

children being underweight and severely underweight. Since WAZ in particular is a composite 

measure of both chronic and acute nutritional deficiency, these negative effects indicate that in 

utero exposure to increased salinity contributes to the likelihood that children are malnourished in 

early-life. 

5.2. Robustness checks for the main results  

5.2.1. Alternative specifications of in utero salinity exposure 

We construct alternative measures of in utero exposure to underline the robustness of our 

main results (we follow Adhvaryu et al. 2019 in this regard). We focus on the results for vulnerable 

coastal areas (within 40 km of the ocean) henceforth.25 In Panel A of Table A2 in the appendix, 

the results on child health outcomes remain robust when we use the sum of monthly salinity values 

(in logs) for the 9 months prior to birth as the source of variation. In Panel B, we retain average in 

utero salinity but also control for the number of months in which salinity exceeds the cluster’s 

mean (by at least one standard deviation) as a measure of intensity. The estimates for the main 

variable of interest are in the same ballpark as those from the main analysis. In Panel C, we use 

the standard deviation of salinity in the 9 months before birth as the variable of interest. The results 

show that higher salinity dispersion is also associated with deteriorating child health outcomes. 

We exclude the southwestern districts from the sample of vulnerable coastal areas in Panel D, 

given the exceptionally high levels of salinity there. The coefficients remain in the same ballpark. 

 
25 Results for all coastal communities within 100 km of the ocean are available on request. 
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In Panel E, we assume a gestation period of 10 months; on the whole, our main results do not 

change. In Panel F, we retain in utero exposure as the treatment variable while simultaneously 

including average salinity in the month and year of birth. We note that the salinity impact from the 

month and year of birth is not statistically significant by itself, nor does it change the magnitude 

of the estimated impact of in utero salinity exposure significantly.26  

 In Table A3, we augment our baseline specification with additional controls including 

seawater temperature, sea surface height, and ocean wind velocity. Our main results remain mostly 

unaltered. 

In Table A4, we replace our variable of interest with binary variables constructed using the 

sample distribution of salinity to account for non-linearities in effects. In Panel A, we condition 

on an indicator variable that equals one if salinity is greater or equal to the 50th percentile value 

(corresponding to a salinity value of 11.3 psu). The results suggest that children exposed to above 

median in utero salinity levels experience worse health. In Panel B, we use quartiles of salinity 

exposure and include three indicator variables that each equal one if the child experienced in utero 

salinity levels equal to the second, third, or fourth quartile range of values.27 The results show that 

relative to the lowest quartile exposure (the omitted category), children in the third and fourth 

quartiles particularly have lower HAZ, WAH, and WAZ, and higher prevalence of severe stunting, 

 
26 There is additional noise added however in the case of two of the three outcomes related to HAZ. But adding up the 

point estimates for in utero and the month and year of birth coefficients yields a total impact of salinity on HAZ that 

is of a similar magnitude (-0.028) to our main specification (-0.025). This is possible since we do not control for day 

of birth, and so some children may be exposed for a relatively longer period of time to levels in their month of birth 

depending on the point in time when they are born. Furthermore, we considered another specification that conditions 

on the standardized measure of salinity and other controls where the standardization is with respect to the cluster-level 

means. However, since this method soaks up all between cluster variation within upazilas, results were mostly 

insignificant. We also considered using mother fixed-effects to focus on the temporal variations in in utero salinity 

among children born to the same mother. We are unable to implement this given the substantial increase in the number 

of parameters to be estimated (due to the large number of mothers in the sample) relative to sample size, similar to the 

issue we face in including cluster fixed-effects in this study.  
27 For the lowest quartile, salinity ≤ 9.3 psu, second quartile: 9.3-11.3 psu, third quartile: 11.3-15.4 psu, and for the 

top quartile: salinity ≥ 15.4 psu.  
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wasting, and underweight. In Panel C, we exclude the southwestern districts from the sample in 

Panel B to show that results hold. 

5.2.2. Effects by trimester  

We disaggregate the exposure variable by trimester to understand whether there are 

gestational periods in which the effects of salinity are more pronounced. This involves estimating 

a variant of our baseline model in equation (1) where 𝛽𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑑𝑚𝑡  is replaced with three 

variables for mean salinity exposure in the first, second, and third trimesters. The results are 

presented in Table A5. Stunting is mainly caused by exposure to salinity in the second trimester: 

a one SD increase in salinity decreases HAZ by 0.18 SDs, increases the chance of stunting by 5.7 

percentage points, and the chance of severe stunting by 7.1 percentage points. Wasting is mainly 

caused by exposure to salinity in the first trimester (with mild impacts from exposure in the third 

trimester): a one SD increase in salinity exposure in the first trimester decreases WAH by 0.16 

SDs. Results for WAZ suggest that second trimester exposure matters. The second trimester is 

when the fetus is in advanced stages of physical and neurological development while the third 

trimester is when most of the weight gain occurs. Impacts on HAZ and WAZ are thus consistent 

with this course of development. However, since exposure across the gestational cycle probably 

cannot be judged independently, we are reluctant to pinpoint the trimester that matters significantly 

for these outcomes.  

5.2.3. Timing of exposure: Controlling for salinity before conception and after birth 

As a falsification test, we check that impact of salinity matters only in the in utero period.28 

In Figure 4, we present results estimating the effects of salinity during the pregnancy period 

 
28 This falsification test is similar to Molina and Saldarriaga (2017). We considered an alternate where we condition 

on in utero 9 month average salinity levels but in the year before and two years before conception, but ruled this out 

as a falsification test given that we already control for seasonality in our models and because intuitively, we should 
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including average salinity levels 1-2 months before conception (10-11 months before birth), 3-4 

months before conception (12-13 months before birth), in the month of birth, and 1 trimester after 

birth. We note that exposure before or after pregnancy does not have significant effects for most 

of the outcomes.29  

5.2.4. Spatial spillover effects   

To quantify the spatial spillovers of salinity impacts on children’s outcomes, we augment 

our baseline regression and generate dummy variables for each cluster indicating its distance to 

the coast in 10 km distance bands. We then replace the single salinity metric in equation (1) with 

interaction terms between these distance bands and salinity exposure.   

Results are presented in Figure 5. We find that the effects of salinity on children’s health 

are larger in clusters closer to the ocean. For instance, the impact of salinity on both WAH and 

WAZ are negative and significant in most clusters that are within 50 kms of the coast, and 

insignificant beyond 50 kms. For severe stunting and severe wasting, the effect is significant within 

70 kms of the coast. Across the board, the magnitude of the effect decreases over distance, which 

aligns with expectations. Figure 5 is also the visual representation of the commonly used “donut” 

regression method to ascertain robustness given displacement of DHS clusters (as noted above 

Burgert et al. 2013 and Michler et al. 2022 confirm that this displacement does not significantly 

influence estimates). If we were to exclude a “donut” area of 10km consistent with displacement 

in rural areas of the Bangladesh DHS, Figure 5 demonstrates that impacts of salinity would still be 

evident.  

5.2.5. The persistence of salinity impacts 

 
augment the baseline regressions (rather than replacing the treatment variable) as done in Molina and Saldarriaga 

(2017).  
29 These results also give us confidence that there is little serial correlation in salinity measures. 
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 We document the persistence of in utero salinity exposure, that is, whether and to what 

extent these impacts carry over from infancy to age 5. To do so, we augment equation (1) with 

dummy variables indicating the child’s age band, from 0-6 months to 54-60 months, and interact 

them with the salinity exposure variable. Figure 6 presents the result. We find suggestive evidence 

that salinity impacts on HAZ and stunted status of infants is small during the first year, increase in 

the second year peaking at 18-24 months, and then subside thereafter. The effects are mostly 

insignificant beyond age 4. This is consistent with evidence in Heady et al. (2018) that up to 23 

months is when stunting is most likely to manifest itself. A similar pattern exists for the WAZ 

score and the chance of being underweight, where the magnitude of the effect peaks at 12-24 

months and then declines. The same is true for the WAH score and measures derived from it.  

5.3. Comparing our findings to related studies 

We place our results in the context of the literature on early-life exposure to environmental 

shocks and child health. Our work is in line with the empirical evidence that climate shocks affect 

child nutrition (Dimitrova 2021, Randell et al. 2020, Thiede and Gray 2020, van der Merwe et al. 

2022). Further, the size of our main estimate is consistent with the 0.12 SD decrease in HAZ caused 

by a one SD change in mean PM 2.5 exposure in Singh et al. (2019).30 Le and Nguyen (2022a) 

study in utero exposure to the outbreak of desert locust swarms in Africa and Asia, and find that 

compared to unexposed children, those exposed prenatally to the outbreak have lower HAZ, WAH, 

and WAZ (by 0.16, 0.15 and 0.16 SD, respectively). These results are consistent with our findings 

using nonlinear specifications (Panels A and B in Table A4). They are also similar to the decline 

 
30 Note that these are the 2SLS results where using burning events as IV is justified based on the literature positing a 

link between in utero exposure to biomass burning events, pollution, and child health (see for instance, Rosales-Rueda 

and Triyana (2019) who find that children exposed to fires in utero in Indonesia are on average 0.3 standard deviations 

shorter than unexposed children; and Rangel and Vogl (2019) for the impact of in utero exposure to agricultural fires 

in Brazil on health at birth).  
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in HAZ, WAH, and WAZ caused by in utero exposure to droughts in Bangladesh (Le and Nguyen 

2022b).  

Focusing on the impact of heat exposure on children aged 3-36 months for five West 

African countries, Blom et al. (2022) finds that for each 100 hours of lifetime exposure to 

temperatures above 350C relative to exposure to temperatures below 250C, HAZ falls by 0.17-0.30 

SD, while the prevalence of stunting increases by 5.9 percentage points. The effects we document 

are similar. However, our estimates are larger than the 0.07 and 0.05 SD decline in HAZ and WAZ 

for children aged 0-5 years resulting from in utero exposure to heat waves in Sub-Saharan Africa 

(Bratti et al. 2021). They are also larger than the estimates in Mulmi et al. (2016) that links early-

life agroclimatic conditions and children’s height in Nepal to find that each 100-point change in 

the Normalized Difference Vegetation Index (NDVI) experienced during mid-gestation is 

associated with a difference in HAZ of 0.09 SD for boys and 0.05 SD for girls, measured at age 

12-59 months.  

We conclude that our results are generally in line with previous studies that investigate the 

impact of early-life environmental shocks on anthropometric measures. Our estimates are also 

consistent with studies that demonstrate that income shocks in the first thousand days of life have 

lasting consequences (Baird et al. 2019, Barham et al. 2013). 

6. Heterogeneity, mechanisms, and adaptation 

6.1. Heterogeneous effects of salinity exposure  

We explore heterogeneity in the impacts of in utero exposure on health by child, maternal, 

and locational characteristics. As we note above, these analyses focus on the most vulnerable 

households living within 40 km of the ocean. Results are presented in Tables 3 and 4. In Panel A 

of Table 3, we estimate impacts by gender of the child which we use as a benchmark for several 
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reasons. It could be that there exists gender-biased early childhood health investments by parents 

(Asadullah et al. 2021, Bharadwaj et al. 2020) in favor of boys (a possibility that we explore 

below). Or the decline in income caused by progressive salinization could differentially impact 

prenatal care and health-seeking behavior, affecting girls’ health disproportionately (also explored 

below). It could also be that the relative vulnerability of male fetuses to adverse shocks leads 

healthier boys to survive to term and then to depict better health outcomes post-birth (Gualtieri 

and Hicks 1985, Kraemer 2000, Sanders and Stoecker 2015). We investigate below whether this 

is true in our sample by evaluating the association between salinity exposure and the probability 

that the child’s gender is male. Returning to the results in Panel A of Table 3, the estimates using 

sub-samples restricted to female children point to larger negative effects in many of the outcomes. 

In Panel B, we consider heterogeneous effects of salinity across birth order. We see that 

while salinity has a detrimental impact on all children, in general, children of higher parity are 

more negatively affected relative to first-born children. This result is likely due to intrafamily 

resource constraints such that when the number of children in the household increases, parental 

investments decrease (Becker and Tomes, 1976; Li et al. 2008).31  

We then use mother’s height as an indicator of mother’s health in Panel C. We split the 

sample by median mother’s height, and document evidence that children of relatively shorter 

mothers are more negatively impacted. In Panel D, we run separate regressions for the sample of 

children whose mothers work outside of the home versus those whose mothers are not engaged in 

this manner. We measure effects relatively more precisely mostly for children whose mothers do 

not work. Children of unemployed mothers are potentially more exposed to the health damages of 

 
31 We show that the negative effects of salinity on prenatal care and at birth investments are more pronounced for non-

first born children in the following section.  
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salinity. Working mothers who are likely educated may have access to knowledge on how to 

protect their children, or have recourse to more effective mitigation strategies.32   

In Table 4, we consider sub-samples created based on location characteristics where 

population density and built-up area are used as proxies for the level of urbanization. In Panel A, 

we find that the response of outcomes to salinity is greater in areas with population density below 

the sample median. The results in Panel B, where we use total built-up area (measuring the number 

of towns, cities, and other buildings in squared km per grid cell), lend support to these findings.33 

Children in more ‘built-up’ coastal areas are less affected.  

In Figure A4, we consider whether children conceived in different times of the year are 

affected by salinity exposure differentially, given that during the monsoon season, precipitation 

attenuates salinity impacts. We focus on month of conception since it is usually the case that 

mothers are unaware of being pregnant, and so we are more confident that adaptive behaviors have 

not been adopted. Panel A of Figure 3 shows that salinities levels are highest in the second quarter 

(Apr-Jun) and lower in the third quarter (Jul-Sep) when the monsoons arrive. Correspondingly, we 

find that for HAZ, stunted, WAZ and underweight in particular, detrimental effects are larger for 

children conceived in the second quarter relative to those conceived in the third quarter. The 

estimates for the other outcome measures are noisier. 

6.2. Agricultural and biodiversity-related losses 

 
32 The differences by gender of the child are not statistically significant.  However, there is a consistent pattern in 

which the more vulnerable children (girls, those born later with relatively shorter and potentially uneducated mothers) 

are especially susceptible.  Our reasoning in reporting separate coefficients by gender despite lack of statistical 

significance in differences is consistent with Rocha and Soares (2015).   
33 The data is available from HYDE 3.2, a data source on which we elaborate further below.  
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Significant reductions in agricultural yields, accompanied with ground water and soil 

quality degradation have profound impacts on livelihoods (Dasgupta et al. 2015, Khanom 2016).34 

We examine agricultural and bio-diversity related adaptation mechanisms, guided by the intuition 

that salinization of agricultural lands may have cascading effects on health via impacts on crop 

systems, aquaculture, livestock, homestead agro-forestry, and land use (Costinot et al. 2016, 

Waldinger 2022). We use two complementary data sources that provide gridded agricultural/land-

use variables in order to undertake this exercise. The first is the annual land cover classifications 

for the period 1993-2019 provided by the Copernicus Land Monitoring Service (CLMS) with a 

spatial resolution of 300 m (0.0030). These are consistent with the annual land cover maps from 

1992-2015 produced by the ESA-CCI LC project (Defourny et al. 2017). Using the coordinates of 

each DHS cluster, we create multiple buffer zones of varying distances and count the total number 

of each land-use class within each buffer zone to track land-use pattern changes over space and 

time.35 Figure A3 presents an example of the procedure for the 1999 clusters. The geolocation of 

clusters is then used to match birth histories with land-use patterns. 

We augment equation (1) with additional land use mediators, including the share of land 

within a given buffer for rainfed crops, irrigated crops, forests, saline flooded forests (mangroves), 

wetland, shrubland, and urban settlement. Table 5 presents the results. We find that after including 

 
34 This has caused aquaculture to boom over the past few decades as coastal communities adapt to increased salinity 

by relying more on shrimp cultivation. This in turn worsens the soil salinity problem further as brackish water invades 

surrounding areas, and leads to a fall in the number of indigenous rice varieties (Rahman et al. 2011).  
35 We create buffer zones of 5 km, 10 km, 20 km and 30 km, but report results only for 30 km given space constraints.  

All results are available on request.  Further, to proxy for agricultural cultivated area, we use the IPCC classes 

representing rainfed cropland and irrigated cropland. To proxy for forestry area, we aggregate the IPCC classes 

representing tree cover (broad-leaved, needle-leaved, evergreen and deciduous). We also focus on the tree cover 

flooded with saline water, and on other land-use classes for shrub land, grassland, sparse vegetation, other bare areas, 

and water. For further details, see the correspondence between the IPCC land categories used for the change detection 

and the LCCS legend used in the land cover classes provided by the Land Cover Climate Change Initiative - Product 

User Guide v2. Issue 2.0. 
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these land use variables, the effect of salinity reduces in magnitude and significance. There is a 

decrease in the magnitude of the salinity coefficient on HAZ after conditioning on land use patterns 

by 84% (the coefficient becomes insignificant). This suggests that land use is an important 

mediating factor for salinity’s effects on children’s health.  

We then examine how salinity exposure may drive land use decisions, aiming to shed 

further light on the agricultural mechanism. To do so, we explain annual land use patterns from 

1993-2019 for each 30 km buffer from the cluster’s center with ocean salinity, pH, average weather 

conditions, and a set of fixed effects (including district FE, year FE, and district-year FE). Table 

A6 presents the results. We find that higher salinity levels are associated with less land used for 

irrigated crops and more for rainfed crops. This is in line with evidence in Shelley et al. (2016) 

where coastal farmers fallow for the winter dry season (boro) and plant rainfed agriculture in the 

wetter monsoon (aman) season to cope with seasonal salinity exposure. The transition from winter 

irrigated to monsoon rainfed agriculture is often coupled with using salinity-resistant traditional 

rice varieties which have significantly lower yields (Shelley et al. 2016). We also find significant 

land use responses moving from forests to shrubland when facing higher salinity levels. Taken 

together, increasing salinity constrains farmers’ land use choices, possibly deterring the planting 

of profitable crops such as irrigated rice. 

To substantiate the above with more evidence that the agricultural channel is a plausible 

one explaining the salinity-child health nexus, we use the History Database of the Global 

Environment – HYDE 3.2 (Goldewijk et al. 2017) to build indicator variables to proxy for the 

intensity of agricultural activities. The database provides gridded time series of population and 

land use from 10,000 B.C to 2017 A.D. The data is available for time intervals 100 years apart 

until 1700, then 10 years apart till 2000, and in 1-year intervals from 2000-2017. We use the 
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available data from 2000 to 2017 and process the geospatial files for the gridded land use data 

(available at the 0.0830 by 0.0830 degree resolution, or approximately 9 km × 9 km). We thus 

obtain annual data for total land used for grazing, for pasture, for total rain-fed agricultural area, 

total rain-fed agricultural area devoted to the production of rice, and total rain-fed agricultural area 

for other crops (except rice), all measured in square km per grid cell.36 We then consider the 

heterogeneous effect of salinity on child health by the intensity of these agricultural activities. 

Figure 7 reports the coefficients on salinity exposure when different sub-samples are used based 

on indicator variables for below or above median values for pasture area, grazing area, rice, and 

rain-fed cultivated area.37 These results provide suggestive evidence that children born in clusters 

experiencing lower agricultural activities (below median) face more pronounced negative health 

effects. We note in Figure 7 that the extent and intensity of rainfed agricultural land devoted to 

rice production and to other crops clearly drive the effects of salinity on child health. Coefficients 

on salinity exposure for “rice area” and “total rainfed area” in this figure are mostly statistically 

significant when the samples are restricted to children born in clusters experiencing below median 

agricultural activities in their year of birth. We conclude that the agricultural mechanism is 

important in explaining the harmful effects of salinity.  

6.3. Early childhood health investments  

We test whether the effect of salinity on child health is intensified or mitigated by 

compensating behaviors of parents (Almond and Mazumder 2011). In Panel A of Table 6 we 

examine the impact of salinity on post-birth vaccinations. The coefficients are negative suggesting 

 
36 Note that this reduces the sample size since we cannot match the data for children in the BDHS who were born 

between 1994-1999 as annual data are only available from 2000 onwards.  
37 Figure 7 provides illustrative evidence since these categories are themselves likely to reflect changes in land use 

patterns as a consequence of increased salinity and are thus not exogenous. But we have no clear “before” period in 

our sample since salinity has always been present and what we study is exogenous increases in its level over time in 

our sample. 
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that increased exposure reduces early childhood investments. In results discussed below, we find 

that these negative impacts originate mainly in the relatively poorer households, which is 

suggestive of an income channel. Water and soil salinization lead to crop failure, destroying 

employment opportunities and resulting in lower agricultural incomes. This could hinder health-

related investments in both the prenatal and postnatal stages. Increased opportunity cost of 

maternal time (Bhalotra et al. 2010, Bharadwaj et al. 2020) due to livelihood losses could also 

explain the fall in vaccination rates.38 

In Panel B of Table 6, we consider effects on the number of antenatal visits, prenatal care, 

medical assistance during delivery, and institutional delivery. In columns (1) and (2), we find that 

higher salinity reduces the number of antenatal visits and lowers the likelihood of receiving iron 

tablets during pregnancy. In columns (3) to (6), the dependent variable equals one if prenatal care 

and medical assistance at birth came from either a doctor or a nurse, respectively. Again, effects 

are negative. In column (7), ‘Delivery: at home’ equals one if the mother reports that she gave 

birth at home. Greater salinity raises the likelihood of home birth. As we note below, these results 

mainly arise among the relatively poorer households (similar to Banerjee and Maharaj 2020).  

Differences in parental investments in prenatal and postnatal healthcare drive part of the 

negative effects of in utero salinity exposure. In Table A7, we re-estimate the impact of salinity 

presented in Table 2, conditioning on these variables. We find that receiving antenatal checkups 

and prenatal assistance from doctors significantly improves children’s outcomes, and the effects 

of salinity become smaller and insignificant for most outcomes.  

 
38 The literature provides mixed evidence on health shocks, compensating behaviors, and parental investments. Molina 

and Saldarriaga (2017) finds negative effects of heat shocks on medical assistance at birth in the Andean region. 

Armand and Taveras (2022) does not observe any significant effect of ocean pH on antenatal and delivery investments. 

Adhvaryu et al. (2019) finds that health investments reduce the effects of in utero dust exposure in West Africa. 
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Drawing on insights from Baird et al. (2011) regarding the significance of gender and birth 

order, we explore if the effects of salinity on health-seeking behavior differ along these 

dimensions. The results are reported in Table A8. We find that there are little differential impacts 

in Panel A that considers early investments in child health along these dimensions. In Panel B, 

mostly the sub-sample of non-first-born children are affected when prenatal care and at birth 

investments are evaluated.  

6.4. Higher incidence of diseases 

We ascertain whether higher in utero salinity exposure affects the incidence of diseases 

(including fever, cough, and diarrhea). While we do not obtain significant results using our 

baseline linear specification, we do find that exposure to above median salinity levels in utero is 

associated with a higher incidence of diarrhea. The outcome of interest in this case is a dummy 

variable that equals one if the child had diarrhea in the previous two weeks. Our focus on this 

variable is justified based on the evidence that diarrhea is particularly prevalent in children exposed 

to high salinity levels in coastal Bangladesh (Chakraborty et al. 2019). 

The results are reported in Table A9. In columns (1) and (4), we consider all the households 

in DHS clusters living within 40 km from the ocean. In columns (2) and (5), we restrict the sample 

to households belonging to the lower wealth quintiles while in columns (3) and (6), we report 

results for the sample restricted to households in the top two quintiles. The variable of interest (a 

dummy variable that takes a value of one if the child is exposed to an above median salinity level) 

is positive but not significant in column (1). It is significant when we restrict our analysis to 

households in the lower wealth quintiles implying that elevated salinity levels increase the 

incidence of diarrhea for poorer children. In columns (4) to (6), we introduce an interaction term 

between salinity exposure and child’s age in months to investigate whether the association persists 
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as the child grows older. We find that children exposed to above median salinity levels have a 

higher likelihood of suffering from diarrhea, with a more pronounced effect again for poorer 

children. The coefficients on the interaction terms are negative and significant indicating that the 

association between above median salinity and diarrhea diminishes with age. 

6.5. Wealth  

 We analyze the influence of wealth in mediating the impacts of salinity. The BDHS data 

has a wealth indicator that classifies households in quintiles of the wealth distribution across 

rounds, constructed using information on assets owned. Since agricultural losses in particular are 

likely to be concentrated among those who own land (the relatively richer households), we create 

a binary variable that equals one for households in the top two quintiles of wealth, zero otherwise 

(the alternate land use measure in BDHS has too many missing values). This indicator thus 

distinguishes the richest households in the distribution. We begin by investigating the effect of 

salinity exposure on these households and results are presented in Table A10. These show that 

salinity has a significant negative effect, that is, salinity exposure reduces the likelihood that 

households are in these richest quintiles of the wealth distribution. 

 Given the strong effect of salinity on wealth, we expect that conditioning on the household 

wealth indicator in the main results of Table 2 will reduce the impact of salinity on outcomes. 

Results presented in Table A11 confirm this to be the case. Whereas the salinity coefficient was 

significant in eight of the nine outcomes in Table 2, it is significant in five outcomes in Table A11. 

Additionally, the household wealth indicator has strong impacts across all columns in this table. 

To obtain better insights into the strength of the wealth mechanism, we apply sequential g-

estimation and use a two-step method as outlined in Acharya et al. (2016). Our aim is to compare 

the average treatment effect (ATE) of higher in utero salinity exposure with the average controlled 
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direct effect (ACDE).39 We use the non-linear specification in Panel A of Table A4 to implement 

this given ease of interpretation. The ACDE indicates what the effect of higher in utero levels 

would be had this mediator not changed, that is, we can obtain the main effect on child outcomes 

after “de-mediating” the effect of wealth.40  

The ACDEs of in utero salinity net of wealth as a mediator are negative and significant 

(albeit of lower statistical significance when the outcome is HAZ), indicating that higher levels of 

salinity would still negatively impact child health outcomes even if there had been no change in 

wealth. Referring specifically to the difference between the ATEs and the ACDEs of in utero 

salinity, we find that approximately 23.5%, 12.6%, and 17.2% of the total effects are mediated by 

wealth when the outcomes of interest are HAZ, WAH, and WAZ, respectively.  

Finally, we analyze variations in parental investments, health-seeking behavior and 

prenatal care by wealth status. That is, we differentiate results presented in Table 6 by the wealth 

status of households using the constructed wealth measure discussed above. These results are 

shown in Table A12 and reveal that many of the significant results in Table 6 arise among the 

poorer households. Among the richer households, there is little evidence that salinity affects 

vaccinations, prenatal care or at birth investments in vulnerable coastal communities. 

7. Selective fertility and migration 

 
39 The key assumption to identify the ACDE is sequential unconfoundedness (Acharya et al. 2016). In our case, this 

implies that there should be no omitted variables for the effect of in utero salinity exposure on child health outcomes, 

conditional on the pre-treatment covariates. There should also be no omitted variables for the effect of wealth on the 

outcomes, conditional on salinity levels, pre-treatment controls, and intermediate confounders. 
40Given that the treatment occurs in utero in our analysis, we need to be careful about the temporal ordering of our 

controls when we partition them into pre-treatment and intermediate confounders. While applying the sequential g-

estimation, in the first stage, we regress the child health outcomes on in utero salinity exposure (measured as a dummy 

variable for above median exposure), the mediator, the pre-treatment controls, and the other covariates used as 

intermediate confounders (we also add the mother’s employment status since intermediate confounders can potentially 

be affected by the treatment - salinity exposure - while also potentially affecting the mediator and the health outcomes). 

In the second stage, we regress a de-mediated version of the predicted child outcome on the treatment, and the pre-

treatment covariates. The coefficient on salinity from this second stage regression is the estimated ACDE. 
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In this section we address potential selection issues related to fertility, birth, and migration. 

We start by testing whether exposure to salinity induces gender imbalance. Studies have 

documented the long-term effects of early-life shocks involving boys’ culling and girls’ scarring 

(Catalano and Bruckner 2006, Liu et al. 2014), and that the vulnerability of male fetuses leads to 

excess male mortality in response to negative health shocks (Sanders and Stoecker 2015). In Table 

A13, we test whether salinity exposure affects the probability that the child is male conditional on 

the set of controls in equation (1). In column (1) we consider whether in utero salinity exposure 

alone predicts the child’s gender. In column (2) we consider the impact of salinity while controlling 

for the salinity level in the month of conception. In column (3) we consider average exposure in 

the 2-9 months period during gestation, and in column (4) we include both salinity in the month 

of conception and in months 2-9 of gestation. In column (5) we consider a nonlinear specification 

that includes quartiles of salinity levels. None of the estimated coefficients are significant. 

Next, we consider survival bias. In this context we note that weaker children are more 

likely to die, indicating that those children who survive in our sample are positively selected 

(Dancer et al. 2008). This leads to a conservative bias in our results, that is, our estimates would 

be even larger in the absence of such positive selection.  

We next consider selection on parental characteristics. We demonstrate in Table A14 that 

maternal characteristics do not correlate with salinity exposure (these tests are motivated by 

Buckles and Hungerman (2013) and Wilde et al. (2017)). The maternal characteristics considered 

are mother’s education (6 and 12 years or less of education) in columns (1) and (2), height in 

column (3), a dummy variable that equals one if she is currently working in column (4), mother’s 

age, age at the time of first delivery, and the age difference with the household’s head (columns 
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(5), (6), and (7), respectively). There are mostly no effects except in the case of mother’s height 

which we control for in all models.  

Finally, we check whether migration impacts our estimates. In the DHS, we observe how 

long mothers have been resident in the cluster (community). We employ two checks related to this 

information. First, we check whether the estimated salinity impact varies by length of residence. 

We do so by restricting the sample to children whose mothers have lived in the current place of 

residence for more than 3, 5, 10, 15, and 20 years.41 The results are presented in Panel A of Figure 

A5. Compared to the baseline estimate (those reported in Table 2), the estimated salinity impact is 

somewhat larger in samples who have been resident in the same location for longer lengths of 

time. This is consistent with the fact that it is the poorer households who tend to stay in the same 

area while the richer households can afford to move away; relatively larger negative estimates for 

poorer households is expected given our findings above. We do lose precision beyond 15 years 

though, likely due to small sample size.   

Second, we check whether the estimated effect varies by the relative timing between 

conception and the mother’s move to the current community. Children whose mother moved to 

the current community after conception (5.3% of the sample) may not receive the full length of in 

utero period exposure corresponding to the current community, potentially attenuating our 

estimated effect.42 Panel B of Figure A5 presents results. We find slightly larger effects for women 

who lived in the community before conception compared to the baseline estimate, although the 

 
41 The sample sizes are 4,292, 3,586, 2,295, 1,449 and 919 if we restrict our sample to children whose mothers have 

lived in the current cluster for more than 3, 5, 10, 15, and 20 years, respectively. 
42 3.4% of the sample moved to the current community during pregnancy. 1.9% of the sample moved to the current 

community after birth. These are relatively small proportions and so we do not remove them from our baseline 

regression.  
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difference is not statistically significant. For those who moved after conception, the effect is 

statistically zero likely because the sample size is relatively small.  

8. Conclusion 

This paper evaluates the harmful consequences of ocean salinity on the health of very 

young children in coastal Bangladesh. We employ geo-referenced data on ocean salinity merged 

with child health outcomes from 6 waves of the Bangladesh Demographic Health Surveys to 

analyze how variations in in utero salinity exposure affects children anthropometrics. Our baseline 

strategy leverages exogenous variations in salinity over time and space (deviations from long run 

district-specific means), while controlling for the effects of district-specific seasonality and local 

trends. Our main results indicate that a one standard deviation increase in in utero salinity exposure 

decreases HAZ scores by 0.11 standard deviation (7.7% of the sample mean), while increasing the 

prevalence of stunting and severe stunting. Similar effects are obtained for weight-for-height and 

weight-for-age. We underline the validity of our results with numerous robustness and 

specification checks.  

Heterogeneity tests reveal that effects are more pronounced for girls, children of higher 

parity, and for children whose mothers are unemployed. We demonstrate that higher salinity levels 

are associated with lower early childhood investments in prenatal and post-birth stages, mostly 

among poorer households. The absence of compensating behaviors suggests that parental 

investments in early-life are not mitigation strategies. Where we do find evidence for adaptation 

is in our analysis of agricultural land use using satellite-sourced information. Here we document 

suggestive evidence that salinity affects the scale and intensity of agricultural activities, with 

possible deleterious consequences on incomes, food security and nutritional intake. We provide 

evidence that increasing salinity constrains farmers’ land use choices. 



38 
 

These findings have important implications for coastal communities in Bangladesh and in 

other countries across the world as climate change induced increases in salinity generate 

irreversible environmental crises. In view of this, a comprehensive assessment of the effects of 

salinity on early-life health is essential to highlight possible adaptation measures to increase 

resilience and to minimize catastrophic fallouts on human health, income and well-being. 
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Figure 1: BDHS coastal communities 

                          

 

Notes: Figure 1 shows the location of all BDHS clusters in our sample. The black triangles represent coastal clusters 

that are within 40 km from the ocean. The gray circles represent coastal clusters that are between 40 km and 100 km 

from the ocean. The black squares represent all the other DHS clusters. Data citation: Wessel, P., and Smith, W. 

1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database, Journal of Geophysical Research, 

101, 8741-8743. 
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Figure 2: Kernel densities of salinity 1995-2018 

 
Panel A: All Coastal Communities                       Panel B: Vulnerable Coastal Communities 

 

Notes: Authors’ calculations using the Copernicus Marine Environment Monitoring Service (CMEMS) for two 

periods. Panel A shows the kernel density for ocean’s salinity for clusters within 100 km of the ocean (coastal 

communities). Panel B shows the kernel density for ocean’s salinity for clusters within 40 km of the ocean (vulnerable 

coastal communities). To match the gridded salinity data to the cluster level, we use the IDW method as explained in 

the text. 
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Figure 3: The seasonality and distribution of salinity in coastal communities  

 
Panel A: The Seasonality of Salinity         Panel B: The Distribution of Salinity 

 

Notes: Authors’ calculations using the Copernicus Marine Environment Monitoring Service (CMEMS). Panel A 

shows the seasonality of salinity (average salinity for each month over all the years) for all coastal communities in our 

data (ocean points matched to clusters in all coastal communities). Panel B shows the distribution of salinity in the 

data for all coastal communities. To match the gridded salinity data to the cluster level, we use the IDW method as 

explained in the text. 
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Figure 4: The effects of salinity on child health, controlling for salinity levels before conception and after birth 
 

 

Notes: The data shows the coefficients of salinity exposure (at different times in the baseline specification). We augment equation (1) with controls for the average 

salinity levels 1-2 months before conception, 3-4 months before conception, in the month of birth, and one trimester after birth. The sample is restricted to DHS 

clusters that are within 40 km from the ocean. We use the same set of controls, spatial and temporal fixed-effects as reported in Table 2. Confidence intervals are 

reported at 90% level. The timing of exposure is shown on the horizontal axis, and corresponding point estimates are shown on the vertical axis. This falsification 

test is similar to Molina and Saldarriaga (2017) and Armand and Taveras (2022). 
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Figure 5: Spatial spillovers of salinity exposure on child health 
 

 

Notes: The panel shows the spatial spillover of in utero salinity impact on health outcomes by distance to the coastline. 

Each sub-panel represents one regression model, which include the interaction between salinity and distance bands 

indicating the distance between the cluster and the coastline. All regressions include child, mother, household, and 

weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial and temporal 

fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and 

are weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence 

interval. 
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Figure 6: Persistence of salinity exposure through early childhood 

 

Notes: The panel shows the persistence in utero salinity impact on health outcomes by age of children. Each sub-panel 

represents one regression model, which include the interaction between salinity and age bands indicating the age of 

the child at the time of the survey, from 0-6 months to 54-60 months. All regressions include child, mother, household, 

and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial and temporal 

fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions are OLS and 

are weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence 

interval. 
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Figure 7: Heterogeneous effects of salinity exposure on child health, by intensity of 

agricultural activities 
  

 

Notes: The panel shows the heterogeneous effects of salinity while in utero on health outcomes by intensity of 

agricultural activities as proxied by indicator variables for below or above sample median values for pasture area, 

grazing area, rice, and rain-fed cultivated area. Estimates are from equation (1). Each coefficient is computed in 

separate regressions where the sample is restricted to the corresponding group. All regressions include child, mother, 

household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial 

and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls. All regressions 

are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. Confidence intervals are 

reported at 90% level. 
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Table 1: Summary statistics of selected variables 

 

  Mean Std. Deviation 

  (1) (2) 

Panel A: health outcomes   

Height-for-age z-score (HAZ) -1.804 1.417 

Stunting (HAZ < 2 SD) 0.451 0.498 

Severe stunting (HAZ < 3 SD) 0.190 0.392 

Weight-for-height z-score (WAH) -0.910 1.130 

Wasting (WAH < 2 SD) 0.146 0.353 

Severe wasting (WAH < 3 SD) 0.032 0.177 

Weight-for-age z-score (WAZ) -1.671 1.153 

Underweight (WAZ < 2 SD) 0.390 0.488 

Severe underweight (WAZ < 3 SD) 0.119 0.323 

Panel B: ocean chemistry variables   

Ocean salinity (psu) 12.591 4.396 

Ocean's pH level 8.199 0.045 

Panel C: weather-related variables   

Minimum temperature (deg. Celcius) 18.691 1.660 

Maximum temperature (deg. Celcius) 33.872 0.797 

Rainfall (mm, logs) 5.360 0.402 

Humidity (%) 81.274 2.466 

Panel D: child, mother, household controls   

Child's age (months) 29.307 17.298 

Child is male 0.503 0.500 

Child birth order 2.691 1.794 

Mother's age at first birth 17.950 2.957 

Mother's height 150.895 5.328 

Mother has no education 0.240 0.420 

Father has no education 0.260 0.440 

Head of household is male 0.871 0.335 

Notes: The data sources include the BDHS 1999, 2004, 2007, 2011, 2014, and 2017, and the 

Copernicus Marine Environment Monitoring Service (CMEMS). The sample is restricted to coastal 

communities living within 40 km of the ocean. 
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Table 2: The effects of salinity exposure on child health 
  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 3 

SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Panel A: Sample of DHS Coastal Clusters Within 40 km 

salinity exposure -0.025* 0.007* 0.013*** -0.029** 0.007** 0.006*** -0.035*** 0.011** 0.005 

(in utero) (0.013) (0.004) (0.004) (0.011) (0.003) (0.002) (0.012) (0.005) (0.004) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

Mean of dependent variable -1.804 0.451 0.190 -0.910 0.146 0.033 -1.672 0.39 0.119 

R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.218 0.182 
          

 Panel B: Sample of DHS Coastal Clusters Within 100 km 

salinity exposure -0.007 0.004 0.009*** -0.026*** 0.007** 0.005*** -0.023** 0.007* 0.005* 

(in utero) (0.011) (0.004) (0.003) (0.009) (0.003) (0.002) (0.010) (0.004) (0.003) 
          

Observations 12,544 12,544 12,544 12,544 12,544 12,544 12,544 12,544 12,544 

Mean of dependent variable -1.727 0.422 0.167 -0.837 0.134 0.029 -1.574 0.353 0.102 

R-squared 0.299 0.255 0.216 0.164 0.131 0.115 0.263 0.204 0.164 
          

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns (1), (4), and (7) for 

height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary 

variables that equal to one if the child is stunted, wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is 

severely stunted, severely wasted, and severely underweight, respectively. The child, mother, household controls include the child's age (in months) and gender, child birth 

order, mother's age at first birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother's 

height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum 

temperature and log of rainfall, and humidity. We also control for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the 

DHS cluster level. Panel A considers the sub-sample of DHS clusters that are within 40 km of the ocean while Panel B considers the sub-sample of DHS clusters that are within 

100 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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Table 3: The heterogeneous effects of salinity on child health 

  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 3 

SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A: Sub-Sample: Male Children Only 

salinity exposure -0.001 0.004 0.001 -0.040** 0.005 0.005** -0.027* 0.006 0.006 

(in utero) (0.017) (0.006) (0.005) (0.016) (0.005) (0.002) (0.015) (0.007) (0.004) 

Observations 3,933 3,933 3,933 3,933 3,933 3,933 3,933 3,933 3,933 

 Sub-Sample: Female Children Only 

salinity exposure -0.033* 0.008 0.022*** -0.024 0.012** 0.008** -0.040*** 0.014** 0.007 

(in utero) (0.018) (0.006) (0.005) (0.016) (0.005) (0.003) (0.015) (0.007) (0.005) 

Observations 3,904 3,904 3,904 3,904 3,904 3,904 3,904 3,904 3,904 

Panel B: Sub-Sample: First Born Children Only 

salinity exposure -0.026 0.008 0.002 -0.017 0.013* 0.008** -0.031 0.005 0.002 

(in utero) (0.026) (0.010) (0.007) (0.023) (0.007) (0.004) (0.021) (0.009) (0.006) 

Observations 2,411 2,411 2,411 2,411 2,411 2,411 2,411 2,411 2,411 

 Sub-Sample: Non-First Born Children 

salinity exposure -0.027* 0.006 0.015*** -0.035*** 0.007* 0.007*** -0.041*** 0.014** 0.010** 

(in utero) (0.015) (0.005) (0.005) (0.013) (0.004) (0.003) (0.013) (0.006) (0.004) 

Observations 5,429 5,429 5,429 5,429 5,429 5,429 5,429 5,429 5,429 

Panel C: Sub-Sample: Mother's height (below median) 

salinity exposure -0.012 0.006 0.011** -0.050*** 0.006 0.006** -0.041*** 0.009 0.009** 

(in utero) (0.018) (0.006) (0.005) (0.017) (0.004) (0.003) (0.015) (0.006) (0.004) 

Observations 3,899 3,899 3,899 3,899 3,899 3,899 3,899 3,899 3,899 

 Sub-Sample: Mother's height (above median) 

salinity exposure -0.028 0.007 0.013** -0.015 0.009* 0.005* -0.028 0.011 0.001 

(in utero) (0.019) (0.006) (0.006) (0.016) (0.005) (0.003) (0.017) (0.008) (0.006) 

Observations 3,940 3,940 3,940 3,940 3,940 3,940 3,940 3,940 3,940 
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Panel D: Sub-Sample: Working Mothers 

salinity exposure -0.036 0.023** 0.012 -0.025 0.012 0.010* -0.038 0.018 -0.001 

(in utero) (0.032) (0.010) (0.009) (0.030) (0.008) (0.005) (0.027) (0.013) (0.008) 

Observations 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 

 Sub-Sample: Non-Working Mothers 

salinity exposure -0.028* 0.005 0.014*** -0.022* 0.006 0.005* -0.033** 0.009 0.006 

(in utero) (0.016) (0.005) (0.004) (0.013) (0.004) (0.003) (0.014) (0.006) (0.004) 

Observations 6,305 6,305 6,305 6,305 6,305 6,305 6,305 6,305 6,305 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in separate 

regressions. The dependent variables in columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, 

are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, 

while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, respectively.  The 

child, mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, a dummy variable that equals to one if 

the mother has no education, a dummy variable that equals to one if the father has no education, mother's height, and the gender of the household head. Weather 

controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. 

We also control for the ocean's pH levels. All regressions are OLS, are weighted, and include the same set of fixed-effects included in equation (1). Robust standard 

errors are clustered at the DHS cluster level. We consider DHS clusters within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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Table 4: The heterogeneous effects of salinity on child health, based on locational characteristics  

 

  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 3 

SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A Sub-Sample: Population Density (Below Median) 

salinity exposure -0.026 0.004 0.014** -0.027* 0.002 0.006* -0.036** 0.004 0.007 

(in utero) (0.018) (0.006) (0.006) (0.015) (0.004) (0.003) (0.015) (0.006) (0.006) 

          

 Sub-Sample: Population Density (Above Median) 

salinity exposure -0.022 0.009 0.006 -0.031 0.006 0.010** -0.032 0.017 0.004 

(in utero) (0.026) (0.010) (0.007) (0.028) (0.008) (0.005) (0.027) (0.011) (0.006) 

          

Panel B Sub-Sample: Built-Up Areas (Below Median) 

salinity exposure -0.036* 0.007 0.015** -0.030* 0.010* 0.008** -0.045** 0.008 0.008 

(in utero) (0.020) (0.006) (0.006) (0.016) (0.005) (0.003) (0.018) (0.007) (0.005) 
          

 Sub-Sample: Built-Up Areas (Above Median) 

salinity exposure 0.027 -0.016* -0.001 0.000 0.003 0.004 0.019 -0.015 0.002 

(in utero) (0.029) (0.010) (0.008) (0.034) (0.011) (0.005) (0.030) (0.011) (0.007) 

          

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in separate 

regressions. The dependent variables in columns (1), (4), and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, 

are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, 

while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, and severely underweight, respectively. The child, 

mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, a dummy variable that equals to one if the 

mother has no education, a dummy variable that equals to one if the father has no education, mother's height, and the gender of the household head. Weather controls 

include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We 

also control for the ocean's pH levels. All regressions are OLS, are weighted, and include the same set of fixed-effects included in equation (1). Robust standard errors 

are clustered at the DHS cluster level. We consider DHS clusters within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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Table 5: The effects of salinity exposure on child health conditioning on land use  

  Dependent Variables: 

 HAZ Stunted Sev. Stunted WAH Wasted Sev. Wasted WAZ Underweight Sev. Unwt. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Sample of DHS Coastal Clusters Within 40 km 

salinity exposure -0.004 0.001 0.008** -0.026* 0.008** 0.005** -0.021 0.006 0.000 

(in utero) (0.014) (0.005) (0.004) (0.014) (0.004) (0.002) (0.013) (0.005) (0.003) 
          

rainfed cropland 1.187* -0.189 -0.213 0.012 -0.093 -0.253*** 0.781 -0.226 -0.170 

 (0.608) (0.215) (0.153) (0.517) (0.163) (0.082) (0.520) (0.210) (0.154) 
          

irrigated cropland 0.350 -0.050 -0.069 -0.234 0.105* 0.019 0.075 0.041 -0.044 

 (0.217) (0.078) (0.065) (0.184) (0.053) (0.029) (0.177) (0.071) (0.052) 
          

forest 2.394*** -0.521* -0.688*** 0.813 -0.160 -0.375*** 2.038*** -0.812*** -0.380* 

 (0.710) (0.273) (0.212) (0.653) (0.186) (0.096) (0.592) (0.251) (0.199) 
          

saline flooded forest (mangroves) 0.062 0.060 -0.145 0.212 -0.006 -0.095 0.320 -0.133 -0.206* 

 (0.655) (0.240) (0.158) (0.529) (0.160) (0.066) (0.495) (0.199) (0.123) 
          

wetland  -21.338 4.942 -0.466 16.989 -5.426 0.610 -2.308 -2.362 -2.696 

 (16.145) (6.061) (4.636) (14.020) (4.007) (2.016) (13.332) (5.911) (3.811) 
          

shrubland -1.095** 0.399** 0.334** -0.323 0.094 0.274*** -1.010 0.346* 0.341*** 

 (0.538) (0.201) (0.147) (0.664) (0.131) (0.090) (0.652) (0.206) (0.128) 
          

urban settlement 2.645 -1.168 0.735 1.574 -0.538 0.185 2.273 -1.664 -0.245 

 (2.900) (1.125) (0.791) (2.971) (0.769) (0.425) (2.755) (1.057) (0.610) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.326 0.279 0.232 0.170 0.152 0.168 0.272 0.222 0.186 
Notes: This table reports coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns (1), (4), and (7) for height-for-

age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that equal 

one if the child is stunted, wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely wasted, 

and severely underweight, respectively.  The child, mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, a dummy 

variable that equals one if the mother has no education, a dummy variable that equals one if the father has no education, mother's height, and the gender of the household head.  

Weather controls include min. and max. temp., rainfall (in logs), interactions between min. and max. temp. and log of rainfall, and humidity. We also control for the ocean's pH levels. 

The land use variables here represent the share of land within a 30 km buffer from each cluster. All regressions are OLS and are weighted. Robust standard errors are clustered at the 

DHS cluster level. We consider the sub-sample of DHS clusters that are within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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Table 6: The impact of salinity on parental investments, health-seeking behavior, and prenatal care 

 

  (1) (2) (3) (4) (5) (6) (7) 

 Panel A: Sample of DHS Coastal Clusters Within 40 km 

 Early Investments in Child Health: Vaccination Received 

 Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus 

salinity exposure -0.006* -0.011** -0.004 -0.005 -0.011** -0.011** -0.012* 

(in utero) (0.003) (0.005) (0.003) (0.004) (0.005) (0.005) (0.007) 
        

Observations 7,410 7,389 7,408 7,408 7,408 7,384 4,198 

R-squared 0.316 0.377 0.269 0.315 0.371 0.505 0.263 

 Panel B: Sample of DHS Coastal Clusters Within 40 km 

 Prenatal Care and At Birth Investments 

 No. of 

antenatal visits 

Received 

iron tablet 

Prenatal care: Assistance at birth: Delivery: at 

home  Doctor Nurse Doctor Nurse 

salinity exposure -0.139*** -0.017** -0.017*** -0.006* -0.008** -0.013*** 0.018*** 

(in utero) (0.031) (0.007) (0.005) (0.003) (0.004) (0.005) (0.005) 
        

Observations 5,857 3,672 5,856 5,856 6,845 6,845 6,836 

R-squared 0.364 0.339 0.370 0.180 0.283 0.325 0.286 
        

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth 

FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth).  The child, mother, household controls 

include the child's age (in months) and gender, child birth order, mother's age at first birth, a dummy variable that equals to one if the mother has no education, 

a dummy variable that equals to one if the father has no education, mother's height, and the gender of the household head. Weather controls include minimum 

and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control 

for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. Panel A considers the sub-

sample of DHS clusters that are within 40 km of the ocean, and the dependent variables are coded as 1 if the child has received the type of vaccination presented 

in each column. In Panel B, we consider the same sample of coastal communities, and the dependent variable is continuous in column (1) for the number of 

antenatal visits. The other outcome variables in columns (2) to (7) are binary variables that equal to one if the mother received iron tablet during pregnancy, 

prenatal care, assistance at birth, and if delivery happened at home, respectively. ***p<0.01, **p<0.05, *p<0.1. 
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Appendix 

 

Figure A1: The nutritional status of children in Bangladesh 

 
Panel A            Panel B 

 

Notes: Panel A shows the percentage of stunted children under five years of age at the upazila (sub-district) level in 2012 in Bangladesh, while Panel B shows the 

percentage of underweight children under five years of age at the upazila (sub-district) level in 2012. The data is available from the Food and Agriculture 

Organization (FAO), and uses the 2012 Undernutrition Maps of Bangladesh.  
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Figure A2: Spatial distribution of ocean salinity exposure 1994-2019 

Panel A: Average Salinity Levels    Panel B: Deviation from District Averages 

 

Note: Panel A (left) shows heatmaps of calculated average salinity level (in PSU) for each upazila (subdistrict) within 100 km to the 

coast over our sample period (1994-2019). Panel B (right) shows heatmaps of upazila-level deviation from the average district-level 

salinity level. Upazila-level salinity metric is averaged from salinity levels for DHS clusters within each cluster, calculated from 

inverse distance averaging the five closest oceanic salinity observation to each cluster. Gray areas are upazilas that are either more 

than 100km away from the coast line or are not sampled by the DHS.    
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Figure A3: Land-cover classifications 

 

 

Notes: This shows the land cover map for 1993, and the location of the DHS clusters as of 1999. We also show buffers of 5 km and 10 km drawn around each 

cluster to obtain an estimate of land cover use. Data citation: Defourny, P., Lamarche, C., Bontemps, S., De Maet, T., Van Bogaert, E., Moreau, I., Brockmann, C., 

Boettcher, M., Kirches, G., Wevers, J., Santoro, M., Ramoino, F., and Arino, O. (2017). Land Cover Climate Change Initiative - Product User Guide v2. Issue 2. 
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Figure A4: The impacts of salinity exposure on child health by quarter of conception 
 

 

Notes: The panel shows the effect of in utero salinity on health outcomes by quarter of conception. Each sub-panel represents one regression model, which include 

the interaction between salinity and the quarter of the child’s conception, tracing back 9 months from the child’s month of birth. All regressions include child, 

mother, household, and weather controls, and ocean’s pH levels used in the main regression analysis. The same set of spatial and temporal fixed-effects are used. 

Please see Table 1 for details on dependent variables and controls. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS 

cluster level. Error bar represents 90% confidence interval. 
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Figure A5: The impact of salinity exposure by migration status 

 

Note: Panel A (top) plots salinity impacts by mother’s migration status. Each sub-panel include six regression models: the baseline estimate identical to that in 

Table 2, and five additional models each restricting the sample to include children whose mother have been living in the current community for more than 3, 5, 10, 

15, and 20 years. Panel B (bottom) plots salinity impacts by the timing of mother moved to the current community. Each sub-panel include four regression models: 

the baseline estimate identical to that in Table 2, and three additional models restricting the sample to include children whose mother moved to the current 

community before that child’s conception or after that child’s conception. All regressions include child, mother, household, and weather controls, and ocean’s pH 

levels used in the main regression analysis. The same set of spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and 

controls. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. Error bar represents 90% confidence interval.  
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Table A1: Double-lasso selection of oceanic and weather controls 

 

Variable 

Frequency 

Selected 

Probability 

Selected Correlation Coeff w/ salinity 

 Ocean Chemistry 

Sea Surface Height 27 100% -0.92 

Sea Surface Temperature 27 100% 0.79 

North Wind Velocity 18 67% -0.05 

pH 12 44% -0.29 

 Weather 

Cumulative Rainfall 12 44% 0.23 

Average Humidity 6 22% -0.15 

Maximum Temperature 6 22% -0.04 

Minimum Temperature 3 11% 0.33 

Minimum Temperature * Cumulative Rainfall 1 4% 0.39 

Note: Double-Lasso selection on oceanic and weather variables on the 40km-from-ocean sample. 27 double-Lasso models 

are estimated on 9 outcome variables (HAZ, stunted, severely stunted, WAH, wasted, severely wasted, WAZ, 

underweight, and severely underweight) using three different criteria of selection (cross-validated, adaptive, and plugin 

adaptive). Ocean salinity and household characteristics are always included in the double-lasso model. All variables are 

demeaned by the same set of saturated fixed-effects through extracting the residual from the regression y = 1 + fixed-

effects. Column 2 reports the number of times a variable is included in the double-Lasso selection; Column 3 reports the 

probability that a variable is selected out of 27 candidate models. Column 4 reports the empirical correlation between the 

variable and ocean salinity after demeaning.   



66 
 

Table A2: The effects of salinity exposure on child health, using alternative measures of exposure and additional controls 

 
  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A:  Sample of DHS Coastal Clusters Within 40 km 

accumulated salinity levels (logs) -0.332* 0.089 0.174*** -0.347** 0.097** 0.093*** -0.448*** 0.144** 0.082* 

(in past 9 months) (0.174) (0.056) (0.051) (0.148) (0.044) (0.029) (0.152) (0.064) (0.046) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.228 0.169 0.151 0.163 0.268 0.219 0.182 

Panel B:  Sample of DHS Coastal Clusters Within 40 km  

salinity exposure -0.026* 0.007* 0.013*** -0.027** 0.007* 0.006** -0.035*** 0.011** 0.005 

(in utero) (0.013) (0.004) (0.004) (0.011) (0.004) (0.002) (0.012) (0.005) (0.004) 

number of months with above 0.015 -0.004 0.002 -0.029 0.017** 0.008 -0.012 0.006 0.013 

cluster mean value (0.036) (0.012) (0.010) (0.034) (0.008) (0.005) (0.031) (0.012) (0.008) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.227 0.169 0.151 0.163 0.268 0.219 0.182 

Panel C:  Sample of DHS Coastal Clusters Within 40 km  

standard deviation of salinity -0.035* 0.007 0.018*** -0.030* 0.005 0.010*** -0.043** 0.014* 0.012** 

(in the 9 months before birth) (0.021) (0.007) (0.006) (0.018) (0.006) (0.004) (0.018) (0.007) (0.005) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.277 0.227 0.168 0.150 0.162 0.267 0.218 0.182 

Panel D:  Sample of DHS Coastal Clusters Within 40 km (excluding southwestern districts) 

salinity exposure -0.028* 0.007 0.013*** -0.026** 0.006* 0.007*** -0.035*** 0.012** 0.007* 

(in utero) (0.014) (0.005) (0.004) (0.012) (0.004) (0.002) (0.013) (0.005) (0.004) 
          

Observations 7,152 7,152 7,152 7,152 7,152 7,152 7,152 7,152 7,152 

R-squared 0.328 0.279 0.235 0.171 0.155 0.173 0.274 0.219 0.192 

Panel E:  Sample of DHS Coastal Clusters Within 40 km  

salinity exposure -0.025* 0.006 0.012*** -0.030*** 0.008** 0.006*** -0.036*** 0.012** 0.006 

(assuming 10 months gestation) (0.014) (0.004) (0.004) (0.012) (0.004) (0.002) (0.012) (0.005) (0.004) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.218 0.182 

Notes:  All regressions include the controls in the main regression analysis. The same set of spatial and temporal fixed-effects are used. Please see Table 1 for details on 

dependent variables and controls.  All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. ***p<0.01, **p<0.05, *p<0.1. 
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Table A2 (continued): The effects of salinity exposure on child health, using alternative measures of exposure and additional 

controls 

Panel F:      Sample of DHS Coastal Clusters Within 40 km        

salinity exposure -0.017 0.007 0.011*** -0.037*** 0.009** 0.005** -0.036*** 0.013** 0.008** 

(in utero) (0.014) (0.005) (0.004) (0.012) (0.004) (0.002) (0.013) (0.005) (0.004) 

          
salinity exposure -0.011 -0.000 0.003 0.012 -0.002 0.001 0.001 -0.002 -0.003 

(in month and year of birth) (0.009) (0.003) (0.002) (0.008) (0.003) (0.001) (0.007) (0.003) (0.002) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.227 0.169 0.151 0.162 0.268 0.219 0.182 

Notes:  All regressions include the controls in the main regression analysis. The same set of spatial and temporal fixed-effects are used. Please see Table 1 

 for details on dependent variables and controls.  All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. 

 ***p<0.01, **p<0.05, *p<0.1 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

Table A3: The effects of salinity exposure on child health controlling for ocean chemistry  

  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 

3SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Sample of DHS Coastal Clusters Within 40 km 

 Controlling for Other Ocean Chemistry Variables 

salinity exposure -0.023* 0.007 0.014*** -0.028** 0.008** 0.007*** -0.034*** 0.011** 0.006 

(in utero) (0.014) (0.005) (0.004) (0.012) (0.004) (0.002) (0.012) (0.005) (0.004) 

          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.227 0.169 0.151 0.163 0.268 0.219 0.182 

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns (1), (4), and (7) for 

height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary 

variables that equal to one if the child is stunted, wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is 

severely stunted, severely wasted, and severely underweight, respectively.   The child, mother, household controls include the child's age (in months) and gender, child birth 

order, mother's age at first birth, a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother's 

height, and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum 

temperature and log of rainfall, and humidity. We also control for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the 

DHS cluster level. We consider the sub-sample of DHS clusters that are within 40 km of the ocean. The additional ocean chemistry variables are: sea temperature, sea surface 

height, and ocean wind velocity.  ***p<0.01, **p<0.05, *p<0.1. 
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Table A4: The effects of salinity exposure on child health using nonlinear specifications 

 

  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 

3SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Panel A: Sample of DHS Coastal Clusters Within 40 km 

 (Using  below/above median sample value of salinity) 

salinity exposure -0.145** 0.030 0.036** -0.149*** 0.036** 0.039*** -0.206*** 0.069*** 0.043*** 

(in utero) above median (0.062) (0.022) (0.018) (0.057) (0.018) (0.012) (0.054) (0.022) (0.016) 

          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.226 0.169 0.151 0.164 0.268 0.219 0.183 

 Panel B: Sample of DHS Coastal Clusters Within 40 km 

 (Using quartiles of salinity) 

salinity exposure -0.030 0.012 0.046** -0.013 0.014 0.024** -0.016 0.002 0.011 

(in utero) second quartile (0.064) (0.023) (0.020) (0.064) (0.020) (0.010) (0.059) (0.025) (0.018) 

          

salinity exposure -0.171* 0.038 0.072*** -0.156** 0.046* 0.059*** -0.217*** 0.069** 0.052** 

(in utero) third quartile (0.087) (0.029) (0.027) (0.076) (0.025) (0.016) (0.076) (0.031) (0.023) 

          

salinity exposure -0.159 0.059 0.117*** -0.214** 0.066** 0.058*** -0.246** 0.092** 0.049 

(in utero) fourth quartile (0.111) (0.038) (0.033) (0.100) (0.032) (0.020) (0.100) (0.042) (0.033) 

          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.227 0.169 0.151 0.165 0.268 0.219 0.183 

          

 Panel C: Sample of DHS Coastal Clusters Within 40 km 

 (Using quartiles of salinity and excluding southwestern districts) 
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salinity exposure 0.008 -0.012 0.019 -0.073 0.018 0.027** -0.034 0.015 0.003 

(in utero) second quartile (0.071) (0.025) (0.022) (0.067) (0.020) (0.011) (0.064) (0.026) (0.019) 

          

salinity exposure -0.101 0.006 0.056** -0.154** 0.037 0.050*** -0.172** 0.060** 0.038* 

(in utero) third quartile (0.079) (0.027) (0.026) (0.074) (0.023) (0.013) (0.071) (0.030) (0.021) 

          

salinity exposure -0.214** 0.048 0.077** -0.240** 0.051* 0.056*** -0.305*** 0.111*** 0.066** 

(in utero) fourth quartile (0.106) (0.034) (0.033) (0.094) (0.030) (0.019) (0.097) (0.039) (0.029) 

          

Observations 7,152 7,152 7,152 7,152 7,152 7,152 7,152 7,152 7,152 

R-squared 0.328 0.279 0.234 0.171 0.155 0.174 0.275 0.220 0.193 

Notes: All regressions include child, mother, household controls, weather controls, and pH used in the main regression analysis. The same set of spatial and temporal 

fixed-effects are used too. Please see Table 1 for details on dependent variables and controls.  All regressions are OLS and are weighted. Robust standard errors are 

clustered at the DHS cluster level. ***p<0.01, **p<0.05, *p<0.1. 
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Table A5: The effects of salinity exposure on child health by trimester 

 

  Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 

2 SD) 

(WAH < 

3 SD)  

(WAZ < 2 

SD) 

(WAZ < 

3SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Sample of DHS Coastal Clusters Within 40 km 

salinity exposure 0.009 -0.004 -0.001 -0.022** 0.005* 0.003 -0.008 0.003 0.001 

(in utero) 1st trimester (0.010) (0.004) (0.003) (0.010) (0.003) (0.002) (0.009) (0.004) (0.003) 

          
salinity exposure -0.026** 0.008** 0.010*** -0.004 -0.001 -0.001 -0.020** 0.006 0.004 

(in utero) 2nd trimester (0.011) (0.004) (0.003) (0.009) (0.003) (0.001) (0.009) (0.004) (0.003) 

          
salinity exposure -0.006 0.002 0.002 -0.003 0.004 0.004*** -0.006 0.002 0.000 

(in utero) 3rd trimester (0.010) (0.003) (0.003) (0.009) (0.003) (0.001) (0.008) (0.004) (0.003) 

          
Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.323 0.278 0.228 0.169 0.151 0.163 0.268 0.219 0.182 

Notes: All regressions include child, mother, household controls, weather controls, and pH used in the main regression analysis. The same set of 

spatial and temporal fixed-effects are used. Please see Table 1 for details on dependent variables and controls.  All regressions are OLS and are 

weighted. Robust standard errors are clustered at the DHS cluster level. ***p<0.01, **p<0.05, *p<0.1. 
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Table A6: The effects of salinity exposure on land use  

 
  Dependent Variables: 

 Share of land within a given buffer for: 

 

rainfed 

cropland 

irrigated 

cropland forest 

saline 

flooded 

forest  wetland shrubland 

urban 

settlement 

  (1) (2) (3) (4) (5) (6) (7) 

                

annual salinity exposure 0.0071*** -0.0225*** -0.0005 0.0039*** -0.0001*** 0.0091*** -0.0013*** 

 (0.0012) (0.0030) (0.0010) (0.0007) (0.0000) (0.0018) (0.0002) 
        

annual pH exposure 0.4414*** -0.4841 0.2131 0.4562*** 0.0188*** 1.1418*** -0.2159*** 

 (0.1191) (0.3024) (0.1332) (0.1147) (0.0045) (0.2261) (0.0272) 
        

annual rainfall 0.0003*** -0.0010*** -0.0000 0.0002*** 0.0000 -0.0001 -0.0000 

 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0001) (0.0000) 
        

annual humidity -0.0014 0.0154*** -0.0143*** -0.0040*** -0.0005*** -0.0051*** -0.0023*** 

 (0.0029) (0.0058) (0.0025) (0.0012) (0.0001) (0.0014) (0.0003) 
        

annual max temperature -0.0182** 0.2034*** 0.0481*** -0.0061 0.0018*** 0.0196*** -0.0001 

 (0.0071) (0.0190) (0.0068) (0.0043) (0.0003) (0.0065) (0.0009) 
        

annual min temperature -0.0363*** 0.2370*** 0.0536*** -0.0017 0.0013*** 0.0267*** -0.0004 

 (0.0089) (0.0211) (0.0092) (0.0055) (0.0004) (0.0078) (0.0012) 
        

annual dry temperature -0.0109 -0.3456*** -0.1078*** 0.0177*** -0.0021*** -0.1200*** 0.0029 

 (0.0200) (0.0294) (0.0206) (0.0068) (0.0007) (0.0168) (0.0032) 
        

Observations 16,536 16,536 16,536 16,536 16,536 16,536 16,536 

R-squared 0.6974 0.7911 0.6459 0.6106 0.6723 0.7830 0.8478 
Notes: This table shows the impact of annual oceanic and local weather variables on land use choices. Each observation represents a 30-km buffer zone 

centered around a cluster that is within 40 km from the ocean. Dependent variables are percentages of land within the 30-km buffer that are devoted to 

those land use categories. All independent variables are aggregated by calendar year to match with the temporal interval of the dependent variables. All 

regressions include district fixed effects, year fixed effects, and district-year fixed effects. Robust standard errors presented in parentheses, clustered at the 

DHS cluster level. ***p<0.01, **p<0.05, *p<0.1.  
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Table A7: The effects of salinity exposure on child health controlling for prenatal care and at birth investments 

 

  
Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) 

(WAZ < 

3SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

salinity exposure -0.017 0.001 0.007 -0.026 0.007 0.004 -0.028* 0.003 0.005 

(in utero) (0.016) (0.006) (0.005) (0.017) (0.005) (0.003) (0.015) (0.007) (0.005) 

          
no. of antenatal visits 0.055*** -0.013*** -0.007* 0.034** -0.003 -0.001 0.057*** -0.013*** -0.005* 

 (0.015) (0.005) (0.004) (0.014) (0.004) (0.002) (0.013) (0.005) (0.003) 

          
received iron tablet -0.108* 0.014 0.013 -0.088 0.023 0.014* -0.115** 0.038* 0.023 

 (0.065) (0.021) (0.018) (0.055) (0.015) (0.008) (0.052) (0.022) (0.016) 

          
prenatal care: doctor 0.234*** -0.075*** -0.058*** 0.063 -0.030* -0.021** 0.167*** -0.064*** -0.054*** 

 (0.073) (0.024) (0.020) (0.058) (0.017) (0.010) (0.063) (0.024) (0.017) 

          
prenatal care: nurse 0.035 -0.025 -0.003 0.022 -0.012 0.000 0.038 -0.078*** -0.016 

 (0.093) (0.033) (0.022) (0.077) (0.021) (0.013) (0.076) (0.030) (0.019) 

          
assistance: doctor 0.141 -0.058 0.022 -0.014 0.002 0.001 0.095 0.013 -0.017 

 (0.097) (0.038) (0.026) (0.098) (0.026) (0.014) (0.092) (0.036) (0.025) 

          
assistance: nurse 0.107 -0.029 -0.033 0.129 -0.000 0.008 0.121 -0.024 0.019 

 (0.090) (0.034) (0.024) (0.081) (0.022) (0.010) (0.076) (0.031) (0.022) 

          
delivery: at home 0.034 -0.008 0.009 -0.084 0.032 0.003 -0.041 0.061** 0.027 

 (0.073) (0.027) (0.020) (0.062) (0.020) (0.009) (0.062) (0.027) (0.019) 

          
Observations 3,663 3,663 3,663 3,663 3,663 3,663 3,663 3,663 3,663 

R-squared 0.411 0.349 0.297 0.235 0.219 0.175 0.353 0.293 0.240 
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Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of 

birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns (1), (4), 

and (7) for height-for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent variables in columns (2), 

(5), and (8) are binary variables that equal to one if the child is stunted, wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary 

variables equal to one if the child is severely stunted, severely wasted, and severely underweight, respectively.  The child, mother, household controls include the 

child's age (in months) and gender, child birth order, mother's age at first birth, a dummy variable that equals to one if the mother has no education, a dummy 

variable that equals to one if the father has no education, mother's height, and the gender of the household head. Weather controls include minimum and maximum 

temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean's pH 

levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. ***p<0.01, **p<0.05, *p<0.1 

 

 

 

 

  

 

 

 

  



75 
 

Table A8: The impact of salinity on health investments, health-seeking behavior, and prenatal care, by gender and birth order                                           
 

  (1) (2) (3) (4) (5) (6) (7) 

  Panel A: Sample of DHS Coastal Clusters Within 40 km 

 Early Investments in Child Health: Vaccination Received 

 Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus 

 Male Children Only 

salinity exposure -0.007* -0.012** -0.004 -0.004 -0.011** -0.015** -0.008 

(in utero) (0.004) (0.005) (0.004) (0.004) (0.005) (0.006) (0.010) 

 Female Children Only 

salinity exposure -0.006 -0.010* -0.006 -0.006 -0.011* -0.006 -0.020** 

(in utero) (0.004) (0.006) (0.004) (0.004) (0.006) (0.007) (0.008) 

   First Born Children Only   

salinity exposure -0.008* -0.015** -0.009** -0.009* -0.016** -0.010 -0.004 

(in utero) (0.004) (0.007) (0.004) (0.005) (0.007) (0.007) (0.012) 

 Non-First Born Children Only 

salinity exposure -0.006 -0.009* -0.003 -0.004 -0.010* -0.014** -0.014* 

(in utero) (0.004) (0.005) (0.004) (0.004) (0.005) (0.006) (0.007) 

  Panel B: Sample of DHS Coastal Clusters Within 40 km 

 Prenatal Care and At Birth Investments 

 No. of 

antenatal visits 

Received iron tablet Prenatal care: Assistance at birth: Delivery: at home 

 
 Doctor Nurse Doctor Nurse  

 Male Children Only 

salinity exposure -0.140*** -0.012 -0.019** -0.002 -0.009* -0.017** 0.020*** 

(in utero) (0.043) (0.011) (0.007) (0.005) (0.005) (0.006) (0.007) 

 Female Children Only 

salinity exposure -0.150*** -0.025** -0.017*** -0.009** -0.006 -0.009 0.015** 

(in utero) (0.039) (0.011) (0.007) (0.005) (0.005) (0.006) (0.007) 

  First Born Children Only 

salinity exposure -0.183*** -0.001 -0.011 -0.005 0.001 -0.012 0.025** 

(in utero) (0.057) (0.016) (0.010) (0.007) (0.008) (0.011) (0.011) 

  Non-First Born Children Only 

salinity exposure -0.146*** -0.022*** -0.021*** -0.006* -0.010** -0.014*** 0.020*** 

(in utero) (0.035) (0.008) (0.006) (0.004) (0.004) (0.005) (0.005) 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in separate 

regressions.  The child, mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, a dummy variable that 

equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother's height, and the gender of the household 

head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of 
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rainfall, and humidity. We also control for the ocean's pH levels. All regressions are OLS, are weighted, and include the same set of fixed-effects included in equation 

(1).  Robust standard errors are clustered at the DHS cluster level. Panel A considers the sub-sample of DHS clusters that are within 40 km of the ocean, and the 

dependent variables are coded as 1 if the child has received the type of vaccination presented in each column. In Panel B, we consider the same sample of coastal 

communities, and the dependent variable is continuous in column (1) for the number of antenatal visits. The other outcome variables in columns (2) to (7) are binary 

variables that equal to one if the mother received iron tablet during pregnancy, prenatal care, assistance at birth, and if delivery happened at home, respectively. 

***p<0.01, **p<0.05, *p<0.1. 
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Table A9 : The effects of salinity exposure on the incidence of diarrhea 
 
  

  Dependent Variable:     

  Child had diarrhea in the previous 2 weeks  

  (1) (2) (3) (4) (5) (6) 

  All Lower 

wealth 

quintiles 

Top two All Lower 

wealth 

quintiles 

Top two 

    wealth quintiles   wealth quintiles 

  Sample of DHS Coastal Clusters Within 40 km  

salinity exposure 0.016 0.028* -0.004 0.040** 0.054** 0.037 

(in utero) above median (0.013) (0.015) (0.022) (0.019) (0.023) (0.031) 

       

age of child (months) -0.001*** -0.000 -0.001*** -0.000 0.000 -0.001* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

       

salinity exposure x age of child    -0.001** -0.001* -0.001* 

    (0.000) (0.001) (0.001) 

       

Observations 7,917 4,924 2,930 7,917 4,924 2,930 

R-squared 0.138 0.194 0.294 0.139 0.194 0.295 

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients on a dummy variable that takes a value of one if the child had above median in utero salinity exposure, on 

the child's age (in months), and on the interaction between these two variables. The dependent variable in all columns is a dummy variable that equals 

to one if it was reported, at the time of the survey, that the child had diarrhea during the past two weeks. In columns (1) and (4), we consider all 
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households in our sample. In columns (2) and (5), we restrict the sample to households belonging to the lower wealth quintiles while in columns (3) 

and (6), only households belonging to the top two wealth quintiles are considered.  The child, mother, household controls include the child's age (in 

months) and gender, child birth order, mother's age at first birth, a dummy variable that equals to one if the mother has no education, a dummy variable 

that equals to one if the father has no education, mother's height, and the gender of the household head. Weather controls include minimum and 

maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also 

control for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. We consider 

the sub-sample of DHS clusters that are within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1 
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Table A10: The effects of salinity exposure on wealth 

 

 Dependent Variable: 

 Top Two Wealth Quintiles 

  (1) 

 Sample of DHS Coastal Clusters Within 40 km 

salinity exposure -0.053*** 

(in utero) (0.007) 

  

Observations 7,978 

R-squared 0.284 

  

Weather controls ✓ 

Ocean chemistry control (pH) ✓ 

District, year of birth, month of birth FE ✓ 

Year of birth x month of birth FE ✓ 

District x month of birth FE ✓ 

District x year of birth FE ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variable in 

column (1) is a binary variable that equal to one if the household is in the top two wealth quintiles. Weather controls include minimum and maximum 

temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for 

the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. We consider the sub-

sample of DHS clusters that are within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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Table A11:  The effects of salinity exposure on child health conditional on wealth quintiles 

 
     Dependent Variables: 

 HAZ Stunted Severely WAH Wasted Severely WAZ Underweight Severely 

   Stunted   Wasted   Underweight 

  

(HAZ < 2 

SD) 

(HAZ < 3 

SD)  

(WAH < 2 

SD) 

(WAH < 3 

SD)  

(WAZ < 2 

SD) (WAZ < 3 SD) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Sample of DHS Coastal Clusters Within 40 km 

salinity exposure -0.007 0.001 0.009** -0.023* 0.006* 0.006** -0.021* 0.006 0.003 

(in utero) (0.013) (0.004) (0.004) (0.012) (0.004) (0.002) (0.012) (0.005) (0.004) 
          

top two highest wealth quintiles 0.438*** -0.145*** -0.098*** 0.135*** -0.038*** -0.010* 0.348*** -0.121*** -0.056*** 

 (0.042) (0.015) (0.011) (0.042) (0.011) (0.006) (0.041) (0.017) (0.010) 
          

Observations 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 7,920 

R-squared 0.337 0.290 0.237 0.171 0.153 0.163 0.281 0.228 0.186 

 

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth). The dependent variables in columns (1), (4), and (7) for height-

for-age z-score, weight-for-height z-score, and for the weight-for-age z-score, respectively, are continuous. Dependent variables in columns (2), (5), and (8) are binary variables that 

equal to one if the child is stunted, wasted, and underweight, respectively, while in columns (3), (6), and (9), the binary variables equal to one if the child is severely stunted, severely 

wasted, and severely underweight, respectively.  The child, mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, a 

dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother's height, and the gender of the household 

head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, and humidity. 

We also control for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. ***p<0.01, **p<0.05, *p<0.1. 
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Table A12: The impact of salinity on health investments, health-seeking behavior, and prenatal care, by wealth quintile 

 
  (1) (2) (3) (4) (5) (6) (7) 

  Panel A: Sample of DHS Coastal Clusters Within 40 km 

 Early Investments in Child Health: Vaccination Received 

 Polio 1 Polio 2 BCG DPT 1 DPT 2 Measles Tetanus 

 Sample: in lower wealth quintiles 

salinity exposure -0.009** -0.013** -0.004 -0.006 -0.013* -0.018*** -0.016** 

(in utero) (0.004) (0.006) (0.004) (0.005) (0.006) (0.006) (0.008) 

 Sample: top two wealth quintiles 

salinity exposure 0.002 -0.000 -0.001 -0.000 -0.002 0.007 0.005 

(in utero) (0.004) (0.006) (0.005) (0.004) (0.006) (0.006) (0.011) 

  Panel B: Sample of DHS Coastal Clusters Within 40 km 

 Prenatal Care and At Birth Investments 

 No. of 

antenatal visits 

Received iron 

tablet 

Prenatal care: Assistance at birth: Delivery: at 

home  Doctor Nurse Doctor Nurse 

 Sample: in lower wealth quintiles 

salinity exposure -0.086*** -0.017* -0.012* -0.009** -0.002 -0.004 0.007 

(in utero) (0.029) (0.010) (0.007) (0.003) (0.003) (0.004) (0.004) 

 Sample: top two wealth quintiles 

salinity exposure -0.170** -0.002 -0.007 -0.013 0.004 -0.005 0.011 

(in utero) (0.075) (0.015) (0.011) (0.008) (0.011) (0.011) (0.012) 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) for different sub-samples used in 

separate regressions.  The child, mother, household controls include the child's age (in months) and gender, child birth order, mother's age at first birth, 

a dummy variable that equals to one if the mother has no education, a dummy variable that equals to one if the father has no education, mother's height, 

and the gender of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between 
minimum and maximum temperature and log of rainfall, and humidity. We also control for the ocean's pH levels. All regressions are OLS, are weighted, 

and include the same set of fixed-effects included in equation (1). Robust standard errors are clustered at the DHS cluster level. Panel A considers the 

sub-sample of DHS clusters that are within 40 km of the ocean, and the dependent variables are coded as 1 if the child has received the type of vaccination 

presented in each column. In Panel B, we consider the same sample of coastal communities, and the dependent variable is continuous in column (1) for 

the number of antenatal visits. The other outcome variables in columns (2) to (7) are binary variables that equal to one if the mother received iron tablet 

during pregnancy, prenatal care, assistance at birth, and if delivery happened at home, respectively. ***p<0.01, **p<0.05, *p<0.1. 
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Table A13: The effects of salinity exposure on child’s gender  

 
  Dependent Variable: Probability that the Child is Male 

  (1) (2) (3) (4) (5) 

  Sample of DHS Coastal Clusters Within 40 km 

salinity exposure -0.001 -0.003    
(in utero) (0.004) (0.006)    

      
salinity exposure  0.002  0.002  
(in month of conception)  (0.004)  (0.004)  

      
salinity exposure   -0.001 -0.003  
(2-9 months during gestation)   (0.004) (0.005)  

      
salinity exposure     0.018 

(in utero) second quartile     (0.028) 
      

salinity exposure     0.001 

(in utero) third quartile     (0.031) 
      

salinity exposure     -0.024 

(in utero) fourth quartile     (0.040) 
      

Observations 7,920 7,920 7,920 7,920 7,920 

R-squared 0.131 0.131 0.131 0.131 0.131 

Child, mother, household controls ✓ ✓ ✓ ✓ ✓ 

Weather controls ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the impact of salinity on the probability that the child is male. The dependent variable is a 

dummy variable that equals to one if the child is male. The child, mother, household controls include the child's 

age (in months), child birth order, mother's age at first birth, a dummy variable that equals to one if the mother has 

no education, a dummy variable that equals to one if the father has no education, mother's height, and the gender 

of the household head. Weather controls include minimum and maximum temperature, rainfall (in logs), the 

interaction between minimum and maximum temperature and log of rainfall, and humidity. We also control for the 

ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster 

level. We use the sub-sample of DHS clusters that are within 40 km of the ocean.***p<0.01, **p<0.05, *p<0.1. 
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Table A14: The effects of salinity exposure on mother’s characteristics 

 
  Dependent Variables: 

 mother's education mother's 

height 

mother 

employed 

mother's 

current age 

mother 's age 

at delivery 

age difference 

with head  <= 6 years <= 12 years 

  (1) (2) (3) (4) (5) (6) (7) 

  Sample of DHS Coastal Clusters Within 40 km 

salinity exposure 0.001 0.001 0.103* -0.002 0.080 0.057 0.028 

(in utero) (0.006) (0.002) (0.061) (0.005) (0.053) (0.049) (0.159) 
        

Observations 7,978 7,978 7,933 7,978 7,978 7,978 7,978 

R-squared 0.144 0.100 0.126 0.211 0.148 0.130 0.141 
        

Child, mother, household controls        
Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocean chemistry control (pH) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District, year of birth, month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Year of birth x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x month of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

District x year of birth FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Notes: This table shows the coefficients of salinity exposure (measured as the average level 9 months prior to birth) on mother's characteristics. The dependent 

variables in columns (1) and (2) are binary variables that equal to one if the mother has 6 and 12 years or less of education, respectively. The dependent variables 

in columns (3), (5), (6), and (7) are continuous. The dependent variable in column (4) is a binary variable that equals to one if the mother is currently working. 

Weather controls include minimum and maximum temperature, rainfall (in logs), the interaction between minimum and maximum temperature and log of rainfall, 

and humidity. We also control for the ocean's pH levels. All regressions are OLS and are weighted. Robust standard errors are clustered at the DHS cluster level. 

We the sub-sample of DHS clusters that are within 40 km of the ocean. ***p<0.01, **p<0.05, *p<0.1. 
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